Erral Reference Guide

IO 1 (o Yo U o {1) o I 1

O O T o - B S | PR 1
1.2. ReQUIrEd SOFWAIE .. .cieiiiiiiiii et 1
1.3. Getting Started With EITaicooiiiiiiii e e e e 1
1.3.1. Technology PrIMErooiiiiiieii e 1
1.3.2. Creating your firSt PrOJECTiciiiiiiii e e 2
1.3.3. Running the app in GWT’s development modecccovveiiiiiniiiiiiinneeennnn. 3
1.3.4. Configuring your project for EClIPSEcccviiiiiiiiiiieie e, 4
1.3.5. A Gentle Introduction t0 CDIcouuiiiiiiii e 8

bV =TT Vo 11 o P 13
2.1. MESSAQING OVEIVIEW ...ceuuiiiiiii ettt ettt ettt e et e e e e eab e e enenns 13
2.2. MeSSAQING APl BASICS ...cvvuieiiiieiiiiei et e e e e e e e e e e e 14
2.2.1. Sending Messages with the Client BUSccooiiiiiiiiiiii e, 14
2.2.2. Receiving Messages on the Server Bus / Server Servicesc.c.ccuuvee.e. 15
2.2.3. Sending Messages with the Server Buscoooiiiiiiiiiiiiiin e, 15
2.2.4. Receiving Messages on the Client Bus/ Client Servicescccoocvvueennnn. 16
A T W T =] Y o = PP 17

2.3. Single-Response Conversations & Pseudo-Synchronous Messaging 18
2.4, Sender INferred SUDJECESiiiiiiii e 18
AT =Y (o Lo (o= 1= i] o 19
2.6. Client-to-Client COMMUNICALIONviieiieiiiee e e e e 19
2.6.1. RElIAY SEIVICES ..ivtiiiiieiiii et e e e 19

2.7. Message Routing INfOrmMationcouuiiiiiiiiiiiii e 20
b T o - T aTo | 1 o Y4 o = 21
2.8.1. Handling global message tranSport €rrorseveveeviineeieiiieeeeeiee e 22

2.9. Asynchronous MesSage TasKSccuiiiiiiiiiiiiiiii e 22
2.10. REPEALING TASKSuiiiiiieiiiii ettt et ettt e e et e e e et e e eaans 23
2.11. QUEBUE SESSIONS ..evuiiiiieiiteeiii ettt e et e e et e et e e et e e et e e et e e ettt e eateeaaneeetn e saneraneenen 24
2,100, LIFECYCIE .o 24
2002, SO PBS itiitiitiii ittt 24
2.12. Client Logging and Error HaNAliNgooeieiiiiiiiiiie e 25
2.13. Wire ProtoCol (J.REP)cuuiiiiiiii et 25
2.13.1. Payload SETUCIUIEccouuniiiiiiiie et 25
2.13.2. MeSSAQE ROULING ...uciiiiiii i e e e e e e e e 28
2.13.3. Bus Management and Handshaking Protocolsccccoeoveiiiinniiinnnnnn. 28
A S o 01V £ T 1 o] o 1SR 30
2,15, WEDSOCKELS ...oiiiiii et e 30
2.15.1. Configuring the sideband SErVercccooieiiiiiiiii i 31
2.15.2. Deploying with JBoss AS 7.1.2 (or higher)cccooviiiiiiiiii e, 31

b T = U 1T o Vo = 33
2.16.1. Turning Server Communication On and Offcccooeeiiiiiiiiiine, 33
2.16.2. Observing Bus Lifecycle State and Communication Status 33
S g T To [0 1T A= Y o = 34
2.18. Debugging Messaging Problemsc.coooiiiiiiii i 35

Errai Reference Guide

3. Dependency INJECTION ...ttt 37
G T O a1 = 11 o T VA ¢ o [38
3.2. Wiring server Side COMPONENESociiitiiiiiiii et 40
TG T o0 o1 T PPN 40

3.3.1. DEPENAENT SCOPEuiiiiiiiii ettt ettt 40
I U1] I o (=T (o] o PP 41
o T = U SR Y= T Vo = 41
3.4.2. Client COMPONENES ...uuiiiiiiii e e e e e e e e e e e e ea e eenaas 42
3.4.3. LIfECYClE TOOIS ...covniiiiiiiiie e 45
3.4.4. TIMed MENOAS ...covviiiiei e 46
3.5. Client-Side Bean MaN@QETcccuuuuiiiiiiiieieii ettt e eaeanns 46
3.5.1. LOOKING UP BEANS ...ceveii e a7
3.5.2. Availability of DEANSc.uuiiiiii 48
3.6. Alternatives and MOCKSiiiiiiiiiiiii e 48
B TG T 1Y 1 (=1 = LY=o P 48
3.6.2. TESE MOCKS ..uiiiiiii ettt et e e e e eaaans 49
3.7. BeAN LIfECYCIE ..eiiiii e 51
3.7.1. DESIrUCLION Of BEANS ...uuiiiiiiiiiiiiiii ettt e e e e eaenns 51
O =V 5 55
4.1. Features and LIMItatioNScouuiiiiiiiiiiiiii et e e e e e e 56
O O B © 1 [= g (= L1 = P 56
4.2, EVENES oot en 56
4.2.1. Conversational EVENTSiiviiiiiiie i 58
4.2.2. LOCAI EVENLS ...ouiiiiiii et 58
4.2.3. Client-Server Event EXamPpPlecoouuiiiiiiiiiii e 59
e T 0 o [T =Y SO 61
4.4, Safe dynamiC [0OKUDcoouuuieiiii et 62
F T B T=T o] (o) Y/ g To T =1 ¢ = T 1 I 63

B MAISNAITIING e et 65

5.1. Mapping YOUr DOM@INioiiuieiiiieiiiie e ee e e e e e e e e e e e et e e et e e e eeens 65
5.1.1. @Portable and @NONPOrabIeccouieiiii 65
LN V.= T o TU F= LY F= '] [T 69
5.1.3. Manual Class MapPinNgcccouuuieieiiiieieiii et eeai e e 71
5.1.4. Custom Marshallersoooiiiiiiiiiiiii e 73

6. Remote Procedure Calls (RPC)uuiiiiiiiiiiii ettt 75
6.1. Creating an RPC INEITACEuiiiiiiiiii e 75
6.2. MAKING CaIIS ...oeeiiiiiii e e 76

LS T) VA 11 1= o2 1T o 77

6.3. Handling @XCEPLIONSiiiiiiiiiiii e et 77
6.3.1. Global RPC exception handlerccooeuiiiiiiiiiin e 78

6.4. Client-Side INTEICEPLONSoiiieii ittt e e e e e e eeaans 78
6.4.1. Annotating the Remote Interfaceccoeeviiiiiii i, 79
6.4.2. Implementing an INtErCEPLONviiiuiiieiiie e 79
6.4.3. Annotating the Interceptor (alternative)ccoeeviiiiiiiiiiiiii i 80

6.4.4. Interceptors and IOCcoouuiiiiiiii e 80

6.5. Session and request objects in RPC endpointsc.cooeeieiiiiiiiiiceii e 80
6.6. Batching remote CallSoiiiiiiiiii e 81
6.7. Asynchronous handling of RPCs 0N the SErvercccoooviiiiiiiciiin e, 81
T EITAl JA X RS it a e 85
7.1. Server-Side JAX-RS Implementationccoovuiiiiiiiiiin e 85
7.2. Shared JAX-RS INTEIfACEiiiiiiiii e e 86
7.3. Creating REQUESESciiiiiiiie e e e e e e e e e e et e et e e eaneeeaaes 87
7.3.1. ProXy INJECHON ...ttt 88

7.4, HaNAliNGg RESPONSES ...uuiiiiiiiiiieiii et e e e e e e e e e e e et e et e e e e eaas 89
7.4.1. HaNAIING EITOIS ..ottt 89

7.5. Client-Side INEICEPIOIS ..ovuiiii et e e e e e e e aa s 91
7.5.1. Annotating the JAX-RS INterfaceccooiiiiiiiiiiiiii e 91
7.5.2. Implementing an INtErCEPLOL ... ccvu i e 92
7.5.3. Annotating the Interceptor (alternative)cccuovieiiiiiiiiiiiiiee e, 92
7.5.4. Interceptors and IOCcooiiiiiiiii e 93

A T 1= 0 0 T | P 93
A R - L1 TSP 93
G T L = TN 1 95
S T 1= 1 1] o [€= Ut (=T o 96
8.1.1. INF/PErsiStENCE.XMI ...couuniiiiii e 96
8.1.2. Declaring an Entity CIassScccuiiiiiiieiiie e 96
8.1.3. Entity LifECYCle StatESccoeviiiiiiiii e 100
8.1.4. Obtaining an instance of EntityManagerccccccoiveiiiiiiiii i 100
8.1.5. Named QUETIESieeiieiii ettt e e e e e e e e anas 102
8.1.6. Entity LifeCyCle EVENLS ...c.ouiiiiiiiii e 103
8.1.7. JPA MetamOUElcoeuniiiiiieii et 105
8.1.8. JPA Features Not Implemented in Errai 2.4ccoococivviiiiiiii i, 106
8.1.9. Other Caveats for Errai 2.1 JPA ..o 106

I - VN | = N B T = B)Y T 107
8.2.1. HOW TO USE Il oo e e 107

LI 7 = B = 11 o L1 Yo RN 115
9.1, GEettiNg STArEAceeueieiiii e 115
9.1.1. Bindable ODBJECEScovviiiii i 115
9.1.2. Initializing @ DataBiNderc..uuiiiiiiiiiiii e 116

9.2, Creating BiNAINGScoviiiiiiii e e e e e e 117
9.3. SPECITYING CONVEITEISvuuiiiiiiieeiet ettt e et e e e eees 118
9.3.1. Registering a global default convertero.ocoieiiiiiiii e, 118
9.3.2. Providing a binding-specific Converterccccoovviiiiniiiiiin e 118

9.4. Property Change HandIerscoouiiiiiiiiiiii e 119
9.5. Declarative BiNAINGoooeuiiiiiii et 119
9.5.1. Default, Simple, and Chained Property Bindingscccccoevvviiiiiiineninnnnns 120
O0.5.2. DAta CONVEITEIS ...euiiiiiie ittt et e et e e eans 121
9.5.3. Replacing a model ObJECTviiiiiiii 122

Errai Reference Guide

9.6. Bean Validationcooiueiiiiiiii e e 122
9.6.1. Excluding Classes from Validationccccciiiiiiiiiiiiiciin e 124
O TR =1 - T) PP 125
OB O 1=) =T g (=0 PP 125
10.2. Use Errai Ul COmpoSite COMPONENTSuuiiiiiiiiieiiiiiiee et ee et e e e e 125
10.2.1. Inject @ SINGIE INSTANCEccouiiiiii i e 125
10.2.2. Inject multiple instances (for iteration)ccccvevieiiiiinieiiiine e 126
10.3. Create a @Templated Composite COMPONENTcvevvieiiiiiiiiieeii e eeeeeaen, 126
10.3.1. BASIC COMPONENTuiiiiiiieieii ettt 126
10.3.2. Custom template NAMEScc.viiiiiiiii e 127
10.4. Create an HTML temMPlateoooiiiiieiiii e 127
10.4.1. Select a template from a larger HTML filecccooeiiiiiiiiiiee, 128
10.5. Use other Widgets in a composite COMPONENEc.uuiveiiiiiiieiiiiiieeeiie e 129
10.5.1. Annotate Widgets in the template with @DataField 129
10.5.2. Add corresponding attributes to the HTML templatecccceeeennnis 130
10.6. How HTML templates are merged with Componentscccccceeeviieviinneinneenn, 131
10.6. 1. EXAMPIE oeeiiiii e 132
10.6.2. Element attributes (template Wins)cccovviiiiiiiiiiiiiiecie e 132
10.6.3. DOM Elements (component field WINS)ccoooeiiiiiiiiiiiiiiiciees 133
10.6.4. Inner text and inner HTML (preserved when component implements
HasText 0r HASHTML) ...cooiiiiiiii e 133
10.7. EVENE NANAIETS ... e 133
O A T O o 4 (07T o PP PP 134
10.7.2. GWT events 0N WIdQeLSccouiiiiiiiiiiicii e e 134
10.7.3. GWT events on DOM EIeMeNtScoeuveiiiiiiiiiiiiiii e 134
10.7.4. Native DOM events on Elementscooovviiiiiiiiiiiieiiiinieeeneeeei e 135
10.8. HTML FOIM SUPPOIT ..ottt ettt et e e e e e e e e e e ees 136
10.8.1. A Login Form that Triggers Browsers' "Remember Password" Feature.... 136
10.8.2. Using the Correct Elements in the Templatecccooeviiiiiiiiiiniinnn. 137
O R B - = =1 T 11T P 138
10.9.1. Default, Simple, and Chained Property Bindingsccccooeviiiiierennnnn. 139
10.9.2. BiNdiNg OF LISES ...civuiiiiiiiii e 140
10.9.3. DAt CONVEIEIS ...etniieiiie ettt e et et e e e e eeens 142
10.10. Nest COMPOSIteE COMPONENLSccvvuiiiiiieiiieeie e e e e e e e e e e e et e e e eeens 142
10.11. Extend COMPOSItE COMPONENESiievineiiiiineieeii et e e et e e e eabe e eeeees 142
0 O O I =T 43 o] = = P 143
10.11.2. Parent COMPONENTietiiirieiii ettt e eena e 143
10.11.3. Child COMPONENTuiiiiiii e e e e e 143
10.12. Stylesheet DINAINGcoouuniiiiii e 144
10.12.1. Usage with Data Bindingccoooiiiiiiiiiiiiiec e 146
10.13. Internationalization (I18N)couuiiiiiiiiieiiii e 146
10.14. Extended styling With LESSccoiiiii e 148
11, Errai Ul NAVIGAtION .ouiiiiiee ettt e et e 151
11.1. Getting Startedcccvniiii i 151

Vi

I o 10T YA 151

5 R =T - T [To = W = Vo - 152
11.2.2. Page LIifECYCIE ...uiiiiiiii e 153
11.2.3. Page State Parametersooviiiiiiiiiinr e 154
11.2.4. Declaring a Link with TransitionANChOrccoiiiiiiiiiiiiiii s 155
11.2.5. Declaring a Manual LiNKcoioiiiiiiiiii e 156
11.2.6. Following a Manual LiNKcoooiiiiiiiiii e 156
11.2.7. Declaring a Link By UniquePageRoleccooeviiiiiiiiiiniiee 157
11.2.8. Installing the Navigation Panel into the User Interfacecc.c.oocee. 157
11.2.9. Overriding the default Nagivating Panel typec.cccocoiviiiiiiiiincciinecnnnn, 158
11.2.10. Handling Navigation ErfOrsSccccuiiiiiiiiiiiieii e 159
11.2.11. Viewing the Generated Navigation Graphcccoeeviiiiiiiieiieeennnn, 160

12. Errai Cordova (MoDile SUPPOIT) ..oeeeeeiiiii e 161
12.1. Integrate with native hardwarecooooiiiiiin e 161
13. EITAI SECUITTY ovtniiiiii ettt et e et e et e e e et eeeeban s 165
13,1, BASIC MOAEI ..o 165
13.2. GetliNg STAMEUuniiieiiiiiee et 165
13.2.1. MAKING USEISiiiiiiiiiciiie et e e e e e e e et e e et e e e e e eaaees 165
13.2.2. Authentication from the Clientccoooeiiiiiiiiii e, 167
13.3. RESIICIEUACCESS ..vuiieiiiiiiieeeit ettt e et e e e et e e e e et e e e eatnnaaeee 168
13.3.1. RPC SEIVICES niitiiiiiiieiie et ettt e e e e e e e e e e e et e e e e e eanaeee 168
13.3.2. Page NaVIgationcccouiiiiiiiiiii e e e e e e 171
13.3.3. HIdiNG Ul EIEMENLSuiiiiiiiiiiiiiii et 174
13.4. Using an Alternative t0 PICKEtLINKccocviiiiiiiiiiii e 175
13.4.1. FOrm Based LOGINccouuuiiiiiiiieiiiiiie et 175

2 1o Yo o 1o Yo 177
140, WAL IS SIFAJ? oo e e 177
I 1= g ST [T T =1 (1 ot 177
14.2.1. Errai Client-Side Log Handlerscc.oiiiiiiiiiiiiiii e 177
14.2.2. Configuring Errai Client-Side Log Handlerscccoccoeveiiiiiiiniiiinneennn, 177
14.2.3. FOrMAL STNQ ..eeiieieiiiii et 178
14.3. SEIVEI-SIAE SEIUP ..uciviiiiii e e e e e e e e eaa s 179
144, EXAMPIE USBGEiiiiiiiiiiii ettt ettt ettt e et e et e b 179
T4.5. LOQOEr NAIMES ..ottt 179
15, CONFIQUIALION ..ttt e et e ettt e e e et e e e eeba e eeees 181
15.1. Errai Development Mode Configurationc.ccoeveiiiieiiiieiiiiece e e 181
15.1.1. Deployment in Development Mode (JBossLauncher)ccccceevevevnnnnnn. 181
15.1.2. Additional JBossLauncher Argumentscccc.ovevviieviiiieiiieeeiineeineeaneens 182
15.1.3. Deployment to an Application Serverccooovveiiiiiiiiiiiiiiee e 182
ST S g =17 o o o] o] 0 1= 4 1 1= P 182
15.2.1. As @ Marker Fileoiiiiiiiie e 182
15.2.2. As a Configuration Filecccouiiiiiiiiiii e 182
15.3. Messaging (Errai Bus) Configurationoceeuiiiiiiiiiiiieiii e 184
15.3.1. Compile-time DEePENdENCIESccvvuuiiiiieii e 184

Vii

Errai Reference Guide

15.3.2. Disabling remote CommUNICALIONc.uuiieiiiiinieiiiiiieeece e 184
15.3.3. Configuring an alternative remote remote bus endpoint 185
15.3.4. ErraiServiCe.proPertieSoouuuuiieiiii et 185
15.3.5. Servlet Configurationcceeiiiiiiiiiiie e 188
15.4. Errai JAX-RS SEIUP ..oiiiiiiiiiii e 191
15.4.1. Compile-time dependencCyco.oiiiiiiiiii i 191
15.4.2. GWT MOCUIE ... e 191
15.4.3. ConfigUIAtioNcouuieiii e e 192
15,5, EITAI JP A oot 193
15.5.1. Compile-time DEePENdENCIESccvvuuiiiiieii e 193
15.5.2. GWT MOdule DESCHIPION ... cieuuiieiiiiiiiee ettt 193
15.6. Errai JPA DaAta SYNC ...civviiiieiii et e e e e e e e e e e e e e e e 193
15.6.1. Compile-time DependencCiescooceieuuiieiiiiiiieeiie e 193
15.6.2. GWT ModUle DESCIIPION . .cvuniiiiieiiiie et e e e e e e e e e e e e eeens 194
15.7. Errai Data BindiNgc..iiiiiiiiii e 194
15.7.1. Compile-time DePENdENCIESccevuuiiiiieiiii e 194
15.7.2. GWT mMOodule deSCrPLOr ...ccouuueiiiiiiee et 194
15.7.3. Bootstrapping Data Binding without Errai IOCcccooeviiiiiiiieiineennn. 195
15.8. EITAI Ul oottt e e e e e e e a e aaaa 195
15.8.1. Compile-time dependencCycc.oiiiiiiiiiiieiie e 195
15.8.2. GWT MOdUule DESCIIPIONciiueiieiiiiiie ettt 195
15.9. Errai Ul NaVIQatiONcccuuiiiiiieiiies e e e e e e e e e e e e et eeea e e eanaees 196
15.9.1. Compile-time DependencCiescooceviuiiieiiiiiiieiiie e 196
15.9.2. GWT ModUle DESCIIPION . .ccvuneiiiieiiii e et e e e e e e eeens 196
15.10. Errai Cordova (Mobile SUPPOIT)cveeiiiieiiiii e 196
15.10.1. Compile-time DEePENdENCIESeeeuuieiiiieiiii e eaeens 196
15.10.2. Cordova Maven PIUGINoooouiiiiiiiiiece e 197
15.10.3. GWT ModUule DESCIIPLON ...cvvuiiiieii e e e e e e e e e e e 197
15.10.4. Building wWith Errai Cordovaooeeveriiieiiiiiiieeiiiie e 198
ST R = TR ST =T od U]] Y/ 198
15.11.1. Compile-time dePeNTENCYuiiiiiiiiiieiiii et 198
15.11.2. GWT Module DESCIIPLOr ...cvvuiiiiiii e e e e e e e e e 199
15.11.3. CDI and Interceptor BiNdiNGSoviiiiiiiieiiiiiieiii e 199
15.12. Errai Project DEPENdENCIESccuuiiiiieiiiieii e e e e e e 199
15.12.1. Errai MESSAGINGuoeieetneeiiiii ettt 199
15.02.2. EITAI CDI covtiiiiiii ettt e e e e 201
15.02.3. ErTai IOC ..oooiiiiiii et 204
T I S ¢ - T U PP 205
15.12.5. Errai NaVIgationc.ueiiiiiiiiiieii e 207
15.12.6. Errai DataBindiNgccuiieiiiiiiiieiiieecie e 208
15.12.7. Errai JPA CHENL .oeieeiiiiiiie et e e e e 210
15.12.8. Errai JPA DAtAsyCcovvuieiieiiiiieiie e e e e e e e e e e e e 211
15.12.9. Errai JAXRS ..o 213
15.12.10. Erral COrdOVA ..uuuiiiiiiiieeiiii ettt e e e e et e e e e e s 215

viii

16.

17.

18.
19.
20.
21.

15.12.10. EITAI SECUNLY ..ueiiitiieeeiii ettt et e et e e e et e e e eeba e eeees 216

Troubleshooting & FAQ ... e 223
16.1. Why does it seem that Errai can’'t see my class at compile time? 223
16.2. Why am | getting "java.lang.ClassFormatError: lllegal method name "<init>$" in
class org/xyz/package/MyCIasS"?ui i 223
16.3. I'm getting "java.lang.RuntimeException: There are no proxy providers registered
yet." in my @PostConstruct Method!o 224

(8] oY = To L= €U] o 1= T 225
17.2. Upgrading from 1.5 10 2.0iiiiiiiiiiii e 225
17.2. Upgrading from 2.0.Beta to 2.0.*.Finalcccccoieiiiiiiiii e 226
17.3. Upgrading from Errai 2.2.X t0 2.4 OF 3.0 ...euuiiiiiiiiieiii e 226
17.4. Upgrading t0 EIral 3.0ccouniiiiiiiiie e 227

970)11V] [- o L= P 229

ST 1V o] =T TP 231

REPOIrtiNg ProbIemS ... e 233

g = T IR o= 1= RO 235

Chapter 1.

Introduction

1.1. What is it?

Errai is a GWT-based framework for building rich web applications using next-generation web
technologies. Built on-top of ErraiBus, the framework provides a unified federation and RPC
infrastructure with true, uniform, asynchronous messaging across the client and server.

1.2. Required software

Errai requires a JDK version 6 or higher and depends on Apache Maven to build and run the
examples, and for leveraging the quickstart utilities.

¢ JDK 6.0: http://java.sun.com/javase/downloads/index.jsp

» Apache Maven: http://maven.apache.org/download.html

1.3. Getting Started with Errai

Errai is a framework which combines a constellation of web and server-side technologies to
assist you in developing large, scaleable rich web applications using a consistent, standardized
programming model for client and server development.

1.3.1. Technology Primer

Since Errai is an end-to-end framework, in that, parts of the framework run and operate within the
client and parts run and operate within the server, there is a set of various technologies upon which
Errai relies. This section will detail the basic core technologies which you'll need to be familiar with.

1.3.1.1. Google Web Toolkit (GWT)

GWT is a toolkit built around a Java-to-JavaScript compiler. It provides a JRE emulation library,
abstraction of browser quirks, a development mode runtime, and tools for native JavaScript
integration.

Errai uses GWT to accomplish the translation of concepts such as CDI into the browser, which
enables a consistent client and server programming experience.

1.3.1.2. Contexts and Dependency Injection (CDI)

CDl is a standard part of the Java EE 6.0 stack, and is defined in the JSR-299 [http://jcp.org/en/
jsridetail?id=299] specification. CDI is the main programming model explored in this guide. As
such, the basic concepts of CDI will be introduced in this guide, so pre-existing knowledge is not
strictly necessary.

Errai's support for CDI is two-fold. For the server-side, Errai has integration with Weld, which is the
reference implementation (RI) of the JSR-299 specification. The client-side integration for CDI is

http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299

Chapter 1. Introduction

provided by the Errai CDI extension. Errai CDI implements a subset of the JSR-299 specification
to provide the CDI programming model within client code.

1.3.1.3. Java API for RESTful Web Services (JAX-RS)

JAX-RS is an APl which provides a standardized programming model for specifying web services
based around the concept of the Representational State Transfer (REST) architecture. REST
has by and far become the preferred way of developing web services, and is used pervasively in
modern web applications. Errai provides a set of tools to make working with JAX-RS easier.

1.3.1.4. ErraiBus

ErraiBus is an underlying transport technology which provides true, bidirectional, asynchronous
messaging between the client and the server. It powers a myriad of technologies throughout the
Errai framework, from RPC to CDI Events.

1.3.2. Creating your first project

Maven Required

The first thing you'll need to do if you have not already, is install Maven
[http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html] . If
you have not already installed Maven, do so now.

Warning: If you use maven2, you will run into this problem: https:/
community.jboss.org/thread/177645

You have two options to set up an Errai application. You can start by copying an existing example
application (i.e. the errai tutorial demo [https://github.com/errai/errai-tutorial/archive/master.zip])
or by building an app with the Errai Forge Addon:

1.3.2.1. Start from a working example application

Simply download and unzip this demo [https://github.com/errai/errai-tutorial/archive/master.zip].
Check out the README file and continue with running the app in GWT's development mode and
importing the project into Eclipse .

1.3.2.2. Starting with the Errai Forge Addon

Another way to start a new project with Errai is to use Forge and the Errai Forge Addon. To use this
method, follow the instructions here [https://github.com/errai/errai/blob/master/errai-forge-addon/
README.asciidoc] to install the Errai Forge Addon and create a new project.

In the upcomming sections, we will demonstrate how to run your app in GWT Development Mode
through the command line and eclipse, so it would be nice to have something to run so that you
are able to verify that everything is working. Here is a sample class you can use that displays an
alert when the app loads:

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://community.jboss.org/thread/177645
https://community.jboss.org/thread/177645
https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai/blob/master/errai-forge-addon/README.asciidoc
https://github.com/errai/errai/blob/master/errai-forge-addon/README.asciidoc
https://github.com/errai/errai/blob/master/errai-forge-addon/README.asciidoc

Running the app in GWT’s development mode

/1 Add the package decl aration here

i mport javax.annotati on. Post Construct;
i mport org.jboss.errai.ioc.client.api.EntryPoint;
i mport com googl e. gwt . user. cl i ent. W ndow;

@nt r yPoi nt
public class App {

@ost Const ruct
public void onLoad() {
W ndow. al ert ("Hell o World!");

For this code to run properly, you must use the the Errai Forge Addon Add Errai Features
command to install Errai IOC.

Create new subfolder, client/local, under the folder containing your GWT module file. Then create
a file, App.java, in this new package and copy the above sample code (making sure to replace
the top comment with the package declaration).

Tip

Plugin Tips. Keep an eye out for tips in the proceeding sections on how you can
use the Errai Forge plugin to configure other Errai features for your new project.

1.3.3. Running the app in GWT’s development mode

GWT's development mode [http:/lwww.gwtproject.org/doc/latest/
DevGuideCompilingAndDebugging.html#DevGuideDevMode] allows for code-refresh
development cycles. Simply change a client-side class and refresh the browser to see your
changes. You can also debug client and server side code in your IDE of choice.

Change into the newly created project directory and type the following:

m/n cl ean gwt:run

This will begin the download of all the dependencies required to develop with and run Errai. It may
take a few minutes to complete the download.

Whenitis finished, you should see the GWT Development Mode runtime window appear as shown
in Figure 1 running on Windows.

http://www.gwtproject.org/doc/latest/DevGuideCompilingAndDebugging.html#DevGuideDevMode
http://www.gwtproject.org/doc/latest/DevGuideCompilingAndDebugging.html#DevGuideDevMode
http://www.gwtproject.org/doc/latest/DevGuideCompilingAndDebugging.html#DevGuideDevMode

Chapter 1. Introduction

Figure 1.1. GWT Development Mode running on Windows

Next, click the Launch Default Browser button. If you have have never used GWT before on your
computer, you may get an error when your browser loads as shown in Figure 2 .

Figure 1.2. Missing plugin error

Click the blue button that says Download the GWT Developer Plugin to download the plugin. Run
the installer to install the plugin for your browser.

Direct download of plugin

If you get a 404 Error for Internet Explorer when clicking the link, you can download
the latest plugin for your browser directly from these links:

* Internet Explorer 32-bit [http://google-web-toolkit.googlecode.com/svn-history/
trunk/plugins/ie/prebuilt/gwt-dev-plugin-x86.msi]

 Internet Explorer 64-bit [http://google-web-toolkit.googlecode.com/svn-history/
trunk/plugins/ie/prebuilt/gwt-dev-plugin-x64.msi]

Once you have configured your browser for development with GWT, and after loading the app
with the Launch Default Browser button, you should see the application load.

If you are using errai-tutorial, you should see a page with a complaint form.

If you followed the instructions for using the Errai Forge plugin, there should be a blank page with
an alert saying "Hello World!".

That's it! You've got your first Errai Application up and running. In the next section we’ll setup
your IDE.

1.3.4. Configuring your project for Eclipse

@ Read the previous section!

This next section assumes you have followed the instructions in the previous
section. As such, we assume you have created an Errai project using the Errai
Forge plugin or a copy of the errai-tutorial project, which we’ll be importing into
your IDE.

http://google-web-toolkit.googlecode.com/svn-history/trunk/plugins/ie/prebuilt/gwt-dev-plugin-x86.msi
http://google-web-toolkit.googlecode.com/svn-history/trunk/plugins/ie/prebuilt/gwt-dev-plugin-x86.msi
http://google-web-toolkit.googlecode.com/svn-history/trunk/plugins/ie/prebuilt/gwt-dev-plugin-x86.msi
http://google-web-toolkit.googlecode.com/svn-history/trunk/plugins/ie/prebuilt/gwt-dev-plugin-x64.msi
http://google-web-toolkit.googlecode.com/svn-history/trunk/plugins/ie/prebuilt/gwt-dev-plugin-x64.msi
http://google-web-toolkit.googlecode.com/svn-history/trunk/plugins/ie/prebuilt/gwt-dev-plugin-x64.msi

Configuring your project for Eclipse

1.3.4.1. Prerequisites

1.3.4.2. Maven Integration for Eclipse (m2e)

The project that was made in the last section is a Maven project. Thus, we will be relying on Maven
to manage our project model throughout this guide. As such, we will want to install Maven tooling
in the IDE. If you have not already installed m2e in Eclipse, you will want to do so now.

To install the Maven tooling, use the following steps:

1. Go to the Eclipse Marketplace under the Help menu in Eclipse.

Figure 1.3. Eclipse Marketplace

2. In the Find dialog enter the phrase Maven and hit enter.

Figure 1.4. Find Dialog

3. Find the Maven Integration for Eclipse plugin and click the Install button for that entry.

Figure 1.5. Maven Integration for Eclipse in Marketplace

4. Accept the defaults by clicking Next , and then accept the User License Agreement to begin
the installation.

1.3.4.3. Importing your project

Once you have completed the installation of the prerequisites from the previous section, you will
now be able to go ahead and import the Maven project you created in the first section of this guide.
We will use the errai-tutorial project as an example.

Follow these steps to get the project setup:

1. From the File menu, select Import...

Figure 1.6. Import File in Eclipse

2. You will be presented with the Import dialog box. From here you want to select Maven
Existing Maven Projects

-

Chapter 1. Introduction

Figure 1.7. Import Existing Maven Project

. From the Import Maven Projects dialog, you will need to select the directory location of the

project you created in the first section of this guide. In the Root Directory field of the dialog,
enter the path to the project, or click Browse... to select it from the file chooser dialog.

Figure 1.8. Select Folder

. Click Finish to begin the import process.

. When the import process has finished, you should see your project imported within the Eclipse

Project Explorer . If you are using errai-tutorial, the App class should be visible within the cl i ent
package.

Figure 1.9. App.java

1.3.4.4. Running Development Mode with Eclipse

. Next you will need to setup a Maven Run Profile for Development Mode. To do so select Run

As... > Run Configurations... from the toolbar.

Figure 1.10. Run Configurations

. Select Maven Build from the sidebar and create a new launch configuration by pressing the

New button in the top left corner.

Figure 1.11. New Configuration

. Give the configuration a name, then click Browse Workspace and select the root directory of

your new project.

Figure 1.12. Select Project Root Directory

O

. Inthe Goals text box, type "clean gwt:run". Click Apply to save the configuration and then Close.

Configuring your project for Eclipse

Figure 1.13. Run Configurations Goals

. 'You can add this new configuration under the Run As button in your toolbar by selecting Run
As > Organize Favorites, then clicking Add and selecting the run configuration.

Figure 1.14. Add Configuration to Favourites

. Atthis point, you should try running your new configuration to make sure everything is in working
order. To run your app, find the run configuration under the Run As menu in the toolbar.

Figure 1.15. Run Gwt Development Mode from Eclipse

This will start the GWT Development Mode exactly as running nvn cl ean gwt :run from the
command line.

1.3.4.5. Debugging in Development Mode with Eclipse

1. To setup a debug run configuration for GWT Development Mode, repeate steps (2) and (3)

from the section above, but this time use the Goals "clean gwt:debug".

Figure 1.16. Configure Maven Debug Configuration

2. Next we will need to setup our remote debugger configurations in Eclipse. Because the client

and server code run on separate JVMs, we will need to setup two such configurations. To create
a debug configuration, select Debug As... > Debug Configurations... from the toolbar.

Figure 1.17. Create Debug Configuration

. In the sidebar, select Remote Java Application and click the New button in the top right corner.

Figure 1.18. Create Remote Debug Configuration

7
appropriate name. If the name of your project is not already in the Project field, click Browse

Chapter 1. Introduction

and select it. The Host and Port values should be localhost and 8000 respectively, such that
your configuration looks like this:

Figure 1.19. Client Debug Configuration
If everything is correct, click Apply.

5. Create another Remote Java Application run configuration with the steps just described for
remote debugging server code. The only differences from the client configuration should be
the name and the port, which is 8001. Thus the server remote debug configuration should look
like this:

Figure 1.20. Server Debug Configuration

6. That's it! You've successfully imported your Errai project into Eclipse. Now, on to coding!

1.3.5. A Gentle Introduction to CDI

This section is based on the previous guide sections

The project you created and setup in the previous two sections (ERRAI:Create
your Project and ERRAI:Configuring your project for Eclipse) will be used as the
basis for this section. So if you have not read them, do so now.

Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai CDI to
follow along with this section.

Errai CDI as its namesake implies is based on, and is in fact, a partial implementation of the CDI
(Contexts and Dependency Injection) specification. Errai CDI covers most of the programming
model but omits the CDI SPI, instead replacing it with it a custom set of APIs which are more
appropriate for the client programming model of Errai.

These differences aside, using Errai CDI in conjunction with CDI on the server will provide you
with a uniform programming model across the client and server code of your application.

This guide does not assume any past experience with CDI. However, you may wish to
consider reading the the Weld Documentation [http://docs.jboss.org/weld/reference/1.1.5.Final/

en-US/html/] in addition to this guide.
8

http://docs.jboss.org/weld/reference/1.1.5.Final/en-US/html/
http://docs.jboss.org/weld/reference/1.1.5.Final/en-US/html/
http://docs.jboss.org/weld/reference/1.1.5.Final/en-US/html/

A Gentle Introduction to CDI

1.3.5.1. Your First Bean

A bean in CDI is merely a POJO (Plain Old Java Object), for the most part. In the context of CDI,
any plain, default constructable class is a member of the dependent scope . Don’t worry too much
about what that means for now. Let’s just go ahead and make one:

public class Foo {
public String getName() {
return "M . Foo";

That was an easy, if uninteresting, exercise. But despite this class' worthy distinction as a
dependent-scoped bean, it's actually quite a useless dependent scope beaned. Well, maybe not
so much useless as it is unused.

Well, how would we use this bean? To answer that question we’re going to need to introduce the
concept of scopes in more detail.

1.3.5.2. Scopes

Scopes, put simply, are the context within which beans live. Some scopes are short-lived and
some are long-lived. For instance, there are beans which you may only want to create during a
request, and beans which you want to live for as long as the application is running.

It turns out that CDI includes a set of default scopes which represent these very things.

We'll start by taking a look at the application scope, which is lovingly represented by the annotation
@vppl i cati onScoped. An application-scoped bean is a bean which will live for the entire duration
of the application. In this sense, it is essentially like a singleton. And it's generally okay to think
of it in that way.

So let’s declare an application-scoped bean:

@\ppl i cati onScoped
public class Bar {
public String getNanme() {
return "M. Bar";

That was almost as easy as making the last bean. The difference between this bean and the last,
is Bar will actually be instantiated by the container automatically, and Foo will not.

So what can we do with Foo ? Well, let's go ahead and get familiar with dependency injection,
shall we?

Chapter 1. Introduction

@\ppl i cati onScoped
public class Bar {
@ nj ect Foo foo;

public String getName() {
return "M . Bar";

We have added a field of the type Foo which we declared earlier, and we have annotated it with
javax.inject.Inject. This tells the container to inject an instance of Foo into our bean. Since
our Foo bean is of the dependent scope, the bean manager will actually create a new instance
of Foo and pass itin.

This scope of the newly instantiated Foo is dependent on the scope that it was injected into. In
this case, the application scope. On the other hand, if we were to turn around an inject Bar into
Foo , the behaviour is quite different.

public class Foo {
@nj ect Bar bar;

public String getName() {
return "M . Foo";

Here, every time a new instance of Foo is created, the same instance of Bar will be injected. That
is to say: this pseudo-code assertion is how always true:

assert fool nstance. bar.foo == fool nstance

Note

This identity check will not actually be true at runtime due to the need to proxy the
class in this scenario. But it is true, that f ool nst ance and f ool nst ance. bar . f oo
both point to the same underlying bean instance.

In the case of an Errai application, there are a bunch of application scoped beans which come
built-in for common services like ErraiBus. Thus, in an Errai application which uses the message
bus, we can inject a handle to the MessageBus service into any of our beans. Let's go ahead and
do that in our Bar class:

10

A Gentle Introduction to CDI

@\ppl i cati onScoped
public class Bar {

@ nj ect Foo foo;

@ nj ect MessageBus bus;

public String getName() {
return "M. Bar";

If working with dependency injection is new to you, then this is where you'll start seeing some
practical benefit. When you need a common service in your client code, you ask the container for
it by injecting it. This frees you from worrying about the proper APIs to use in order to access a
service; we need to use the message bus in our Bar bean, and so we inject it.

1.3.5.3. EntryPoints

Now that we're getting the gist of how dependency injection works, let's go back to our sample
project.

In the App class that was created you may have noticed that the bean’s scope is @nt r yPoi nt .

The @ntryPoi nt annotation is an annotation which provides a an analogue to the GWT
EntryPoint concept within the context of CDI in Errai. Basically you want to think of @nt r yPoi nt
beans as the Errai CDIl-equalivalent of mai n() methods. But as of Errai 2.2., that might
actually be going a little far. In fact, you might be asking what is the real difference between
@\ppl i cati onScoped and @nt r yPoi nt in practice. The short answer is: nothing.

When Errai IOC, the technology which powers Errai’s client-side CDI, was first built, it lacked the
concept of scopes. To create entry point objects into the application which would automatically
run, this annotation was added.

If you're not convinced, try running this example with the mvn cl ean gwt : r un command (described
above).

@ Launching maven the first time

Please note, that when launching maven the first time on your machine, it will
fetch all dependencies from a central repository. This may take a while, because it
includes downloading large binaries like GWT SDK. However, subsequent builds
are not required to go through this step and will be much faster.

11

12

Chapter 2.

Messaging

This section covers the core messaging concepts of the ErraiBus messaging framework.

ErraiBus provides a straight-forward approach to a complex problem space. Providing common
APIs across the client and server, developers will have no trouble working with complex messaging
scenarios such as building instant messaging clients, stock tickers, to monitoring instruments.
There’s no more messing with RPC APIs, or unwieldy AJAX or COMET frameworks. We've built
it all in to one concise messaging framework. It's single-paradigm, and it's fun to work with.

2.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Here are some
important facts you'll need to know:

 Service endpoints are given string-based names that are referenced by message senders.

» There is no difference between sending a message to a client-based service, or sending a
message to a server-based service.

« Furthermore, a service of the same name may co-exist on both the client and the server and
both will receive all messages bound for that service name, whether they are sent from the
client or from the server.

» Services are lightweight in ErraiBus, and can be declared liberally and extensively within your
application to provide a message-based infrastructure for your web application.

It can be tempting to think of ErraiBus simply as a client-server communication platform, but there
is a plethora of possibilities for using ErraiBus purely within the GWT client context, such as a way
to advertise and expose components dynamically, to get around the lack of reflection in GWT.

So keep that in mind when you run up against problems in the client space that could benefit from
runtime federation.

ﬁ Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai
Messaging to follow along with this section.

Manual Setup Section

13

Chapter 2. Messaging

2.2. Messaging API Basics

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder
API, that is used for constructing messages. All three major message patterns can be constructed
from the MessageBui | der.

Components that want to receive messages need to implement the MessageCal | back interface.

But before we dive into the details, let’s look at some use cases.

2.2.1. Sending Messages with the Client Bus

In order to send a message from a client you need to create a Message and send it through an
instance of MessageBus . In this simple example we send it to the subject HelloWorldService.

public class Hellowrld inplenments EntryPoint {

/1 Get an instance of the RequestDi spatcher
private Request D spatcher di spatcher = Errai Bus. get Di spatcher();

public void onMbdul eLoad() {
Button button = new Button("Send nessage");

butt on. addd i ckHandl er (new d i ckHandl er () {
public void onCick(dickEvent event) {
/1 Send a nmessage to the 'Hel |l oWrl dService'.
MessageBui | der . cr eat eMessage()
.toSubj ect ("Hel | oWorl dService") // (1)
.signalling() // (2)
.noErrorHandling() // (3)
. sendNowW t h(di spatcher); // (4)
1)

In the above example we build and send a message every time the button is clicked. Here's an
explanation of what's going on as annotated above:

1. We specify the subject we wish to send a message to. In this case, " Hel | oWor | dServi ce ".

2. We indicate that we wish to only signal the service, meaning, that we’re not sending a qualifying
command to the service. For information on this, read the section on Protocols.

3. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

14

Receiving Messages on the Server Bus / Server Services

4. We transmit the message by providing an instance to the Request Di spat cher

Important

An astute observer will note that access to the Request Di spat cher differs
within client code and server code. Because this client code does not run within
a container, access to the Request Di spat cher and MessageBus is provided
statically using the Errai Bus. get () and Err ai Bus. get Di spat cher () methods.
See the section on Errai IOC and Errai CDI for using ErraiBus from a client-side
container.

When using Errai IOC or CDI, you can also use the Sender<T> interface to send
messages.

2.2.2. Receiving Messages on the Server Bus / Server Services

Every message has a sender and at least one receiver. A receiver is as it sounds—it receives the
message and does something with it. Implementing a receiver (also referred to as a service) is
as simple as implementing our standard MessageCallback interface, which is used pervasively
across, both client and server code. Let's begin with server side component that receives
messages:

@ber vi ce
public class Hell oWbrl dService inplenents MessageCal | back {
public void call back(Message nessage) ({
Systemout.printin("Hello, Wrld!");

Here we declare an extremely simple service. The @Ber vi ce annotation provides a convenient,
meta-data based way of having the bus auto-discover and deploy the service.

2.2.3. Sending Messages with the Server Bus

In the following example we extend our server side component to reply with a message
when the callback method is invoked. It will create a message and address it to the subject '
Hel | oWorl dd i ent "

@er vi ce
public class Hell oWwrldService inplenents MessageCal | back {

private Request D spatcher dispatcher;

@ nj ect

15

Chapter 2. Messaging

public Hel | oWorl dServi ce(Request Di spat cher di spatcher) {
di spatcher = di spatcher;

public void call back(CommandMessage nessage) {
/1l Send a nessage to the 'HellowrldCient'.
MessageBui | der . cr eat eMessage()
.toSubject("HelloWorldCient") // (1)

.signal ling() Il (2)
.with("text", "H There") /1 (3)
. noError Handl i ng() Il (4)
. sendNowW t h(di spat cher); /'l (5)

1)

The above example shows a service which sends a message in response to receiving a message.
Here’s what's going on:

1. We specify the subject we wish to send a message to. In this case, " Hel | oWor 1 dC i ent ". We
are sending this message to all clients which are listening in on this subject. For information on
how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we’re not sending a qualifying
command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

5. We transmit the message by providing an instance of the Request Di spat cher .
2.2.4. Receiving Messages on the Client Bus/ Client Services

Messages can be received asynchronously and arbitriraily by declaring callback services within
the client bus. As ErraiBus maintains an open COMET channel at all times, these messages are
delivered in real time to the client as they are sent. This provides built-in push messaging for all
client services.

public class Hellowrld inplements EntryPoint {

private MessageBus bus = Errai Bus.get();

public void onMbdul eLoad() {
[-..]

16

Local Services

/*
* Declare a service to receive nessages on the subject
* "Broadcast Recei ver".
*/
bus. subscri be("Broadcast Recei ver", new MessageCal | back() {
public void cal |l back(CommandMessage nmessage) {
/*
* When a message arrives, extract the "text" field and
* do sonmething with it
*/
String messageText = message.get(String.class, "text");

1)

In the above example, we declare a new client service called " Br oadcast Recei ver " which can
now accept both local messages and remote messages from the server bus. The service will be
available in the client to receive messages as long the client bus is and the service is not explicitly
de-registered.

2.2.5. Local Services

On the client or the server, you can create a local receiver which only receives messages that
originated on the local bus. A local server-side service only receives messages that originate on
that server, and a local client-side service only receives messages that originated on that client.

To create a local receiver using the declarative API, use the @ocal annotation in conjunction
with @er vi ce:

@ocal
@ervi ce
public class HellolntrovertService inplenents MessageCal | back {
public void call back(Message message) {
Systemout.printin("Hello, ne!");

To create a local receiver using through programmatic service registration, use the
subscri beLocal () method in place of subscri be() :

public void registerLocal Servi ce(MessageBus bus) {
bus. subscri belLocal (" Local Broadcast Recei ver", new MessageCal | back() {

17

Chapter 2. Messaging

public void call back(Message nmessage) {
String messageText = nessage.get(String.class, "text");
}
1)

Both examples above work in client- and server-side code.

2.3. Single-Response Conversations & Pseudo-
Synchronous Messaging

Itis possible to contruct a message and a default response handler as part of the MessageBui | der
API. It should be noted, that multiple replies will not be possible and will result an exception
if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous
conversive things.

You can do this by specifying a MessageCal | back using the repliesTo() method in the
MessageBui | der API after specifying the error handling of the message.

MessageBui | der . cr eat eMessage()
.t oSubj ect (" Conver sati onal Servi ce").signalling()
.wi th("SoneFi el d*, soneVal ue)
. noEr r or Handl i ng()
.repliesTo(new MessageCal | back() {
public void call back(Message message) {
Systemout.println("l received a response");

})

See the next section on how to build conversational services that can respond to such messages.

2.4. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it
would like the reply to go to. This is accomplished by utilizing the standard MessagePar t s. Repl yTo
message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

MessageBui | der . cr eat eMessage()
.toSubj ect (" Ooj ect Servi ce").signalling()
.W th(MessageParts. Repl yTo, "d ient Endpoint")
. noEr ror Handl i ng() . sendNowW t h(di spat cher);

18

Broadcasting

And the conversational code on the server (for service ObjectService):

MessageBui | der . creat eConver sati on(message)
. subj ect Provi ded() . signal i ng()
.wWi th("Records", records)
. noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called
"Cbj ect Ser vi ce" and is referencing the incoming message that was sent in the former example,
the message created will automatically reference the Repl yTo subject that was provided by the
sender, and send the message back to the subject desired by the client on the client that sent
the message.

2.5. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves
nothing more than forgoing use of the reply API. For instance:

MessageBui | der . cr eat eMessage() .
.t oSubj ect (" MessagelLi st ener")
.wWth("Text", "Hello, fromyour overlords in the cloud")
. noEr ror Handl i ng() . sendd obal Wt h(di spatcher);

If sent from the server, all clients currently connected, who are listening to the subject
"Messageli st ener " will receive the message. It's as simple as that.

2.6. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,
by design. This isn't to say that it's not possible. But one client cannot see a service within the
federation of another client. We institute this limitation as a matter of basic security. But many
software engineers will likely find the prospects of such communication appealing, so this section
will provide some basic pointers on how to go about accomplishing it.

2.6.1. Relay Services

The essential architectural thing you'll need to do is create a relay service that runs on the server.
Since a service advertised on the server is visible to all clients and all clients are visible to the
server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple
protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because
it still needs to be routed through the server)

19

Chapter 2. Messaging

While you can probably imagine simply creating a broadcast-like service which accepts a message
from one client and broadcasts it to the rest of the world, it may be less clear how to go about
routing from one particular client to another particular client, so we’ll focus on that problem. This
is covered in the next chapter.

2.7. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain
session routing information. This information is used by the bus to determine what outbound
gqueues to use to deliver the message to, so they will reach their intended recipients. It is possible to
manually specify this information to indicate to the bus, where you want a specific message to go.

You can obtain the Sessi onl Ddirectly from a Message by getting the QueueSessi on resource:

QueueSessi on sess = nessage. get Resour ce(QueueSessi on. cl ass, Resources. Session. nane());
String sessionld = sess. get Sessionld();

You can extract the Sessi onl D from a message so that you may use it for routing by obtaining
the QueueSessi on resource from the Message. For example:

public void call back(Message nmessage) {
QueueSessi on sess = nessage. get Resour ce(QueueSessi on. cl ass, Resources. Sessi on. nane());
String sessionld = sess. get Sessionld();

/'l Record this sessionld sonewhere.

The Sessi onl D can then be stored in a medium, say a Map, to cross-reference specific users or
whatever identifier you wish to allow one client to obtain a reference to the specific Sessi onl D of
another client. In which case, you can then provide the Sessi onl D as a MessagePart to indicate
to the bus where you want the message to go.

MessageBui | der . cr eat eMessage()
.toSubj ect ("C i ent Messageli st ener™)

.signal l'ing()
.w th(MessageParts. Sessi onl D, sessi onl d)
Wi th("Message", "W're relaying a nessage!")

. noEr ror Handl i ng() . sendNowW t h(di spat cher);

By providing the Sessi onl D part in the message, the bus will see this and use it for routing the
message to the relevant queue.

20

Handling Errors

It may be tempting however, to try and include destination Sessi onl Ds at the client level, assuming
that this will make the infrastructure simpler. But this will not achieve the desired results, as the
bus treats Sessi onl Ds as transient. Meaning, the Sessi onl D information is not ever transmitted
from bus-to-bus, and therefore is only directly relevant to the proximate bus.

2.8. Handling Errors

Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support
for handling errors is built directly into the MessageBui | der API, utilizing the Error Cal | back
interface. In the examples shown in previous exceptions, error handing has been glossed over
with aubiquitous usage of the noEr r or Handl i ng() method while building messaging. We chose to
require the explicit use of such a method to remind developers of the fact that they are responsible
for their own error handling, requiring you to explicity make the decision to forego handling
potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker
identification of problems with your applications if you have error handlers, and generally help you
build more robust code.

MessageBui | der. cr eat eMessage()
.toSubj ect (" Hel | oWor| dServi ce")
.signal ling()
.wWth("nsg", "H there!")
. errorsHandl edBy(new ErrorCal | back() {
publi c bool ean error(Message nmessage, Throwabl e throwable) {
t hrowabl e. pri nt St ackTrace() ;
return true;
}

})
. sendNowW t h(di spat cher);

The addition of error handling at first may put off developers as it makes code more verbose and
less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where
the same error handler can appropriately be shared between multiple different calls.

Error Cal | back error = new ErrorCal |l back() {
publi c bool ean error(Message nmessage, Throwabl e throwabl e) {
t hrowabl e. pri nt St ackTrace() ;
return true;

MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oWbr | dServi ce")
.signal ling()

21

Chapter 2. Messaging

.with("nsg", "H there!")
.errorsHandl edBy(error)
. sendNowW t h(di spat cher);

The error handler is required to return a bool ean value. This is to indicate whether or not Errai
should perform the default error handling actions it would normally take during a failure. You
will almost always want to return true here, unless you are trying to explicitly surpress some
undesirably activity by Errai, such as automatic subject-termination in conversations. But this is
almost never the case.

2.8.1. Handling global message transport errors

You may need to detect problems which occur on the bus at runtime. The client bus API provides a
facility for doing thisinthe or g. j boss. errai . bus. cli ent. f ramewor k. d i ent MessageBus using
the addTr ansport Err or Handl er () method.

A Transport Error Handl er is an interface which you can use to define error handling behavior
in the event of a transport problem.

For example:

nmessageBus. addTr ansport Err or Handl er (new Transport Error Handl er () {
public void onError(TransportError error) {
/1 error handling code.

}
1),

The Transport Er r or interface represents the details of an an error from the bus. It contains a set
of methods which can be used for determining information on the initial request which triggered
the error, if the error occurred over HTTP or WebSockets, status code information, etc. See the
JavaDoc for more information.

2.9. Asynchronous Message Tasks

In some applications, it may be necessary or desirable to delay transmission of, or continually
stream data to a remote client or group of clients (or from a client to the server). In cases
like this, you can utilize the repl yRepeating() , replyDel ayed() , sendRepeating() and
sendDel ayed() methods in the MessageBui | der.

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate
method (either r epl yDel ayed() or sendDel ayed()).

MessageBui | der . cr eat eConver sati on(msQ)
.t oSubj ect (" FunSubj ect ")
.signal ling()

22

Repeating Tasks

. noEr r or Handl i ng()
.repl yDel ayed(Ti meUni t. SECONDS, 5); // sends the nessage after 5 seconds.

or

MessageBui | der. cr eat eMessage()
.t oSubj ect (" FunSubj ect ")
.signal l'i ng()
. noError Handl i ng()
. sendDel ayed(request Di spat cher, Ti meUni t . SECONDS, 5); /
| sends the nmessage after 5 seconds.

2.10. Repeating Tasks

A repeating task is sent using one of the MessageBuilder's r epeat XXX() methods. The task will
repeat indefinitely until cancelled (see next section).

MessageBui | der . cr eat eMessage()
.t oSubj ect (" FunSubj ect")
.signal l'ing()
.Wi thProvided("tine", new ResourceProvider<String>() {
Si npl eDat eFormat fnmt = new Si npl eDat eFor mat (" hh: nm ss") ;

public String get() {
return fnt.format(new Date(SystemcurrentTimeM I lis());

}
. noErr or Handl i ng()

. sendRepeat i ngWt h(request Di spatcher, Ti meUni t. SECONDS, 1; 1/
sends a nmessage every 1 second

The above example sends a message very 1 second with a message part called "ti me",
containing a formatted time string. Note the use of the wi t hProvi ded() method; a provided
message part is calculated at the time of transmission as opposed to when the message is
constructed.

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the
cancel () method of the AsyncTask instance which is returned when creating a task. Reference
to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBuil der. creat eConversati on(nessage)
.toSubj ect (" Ti neChannel ") . si gnal | i ng()
. Wi thProvi ded(Ti neServerParts. Ti mneStri ng, new ResourceProvi der<String>() {

23

Chapter 2. Messaging

public String get() {
return String.val ue (SystemcurrentTineMIIlis());

}
}) . defaul t ErrorHandl i ng().repl yRepeating(Ti neUnit.M LLI SECONDS, 100);

/1 cancel the task and interrupt it's thread if necessary.
t ask. cancel (true);

2.11. Queue Sessions

The ErraiBus maintains it's own seperate session management on-top of the regular HTTP
session management. While the queue sessions are tied to, and dependant on HTTP sessions for
the most part (meaning they die when HTTP sessions die), they provide extra layers of session
tracking to make dealing with complex applications built on Errai easier.

2.11.1. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity
thresholds. Clients are required to send heartbeat messages every once in a while to maintain
their sessions with the server. If a heartbeat message is not received after a certain period of time,
the session is terminated and any resources are deallocated.

2.11.2. Scopes

One of the things Errai offers is the concept of session and local scopes.
2.11.2.1. Session Scope

A session scope is scoped across all instances of the same session. When a session scope is
used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService inplenments MessageCal | back {
public void callback(final Message nessage) ({
/1 obtain a reference to the session context by referencing the incom ng
nmessage.
Sessi onCont ext i njectionContext = SessionContext.get(nessage);

/] set an attribute.
i njectionContext.setAttribute("MAttribute", "Foo");

24

Client Logging and Error Handling

2.11.2.2. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store
parameters inside a local scope just like with a session by using the Local Cont ext helper class.

public class TestService inplenents MessageCal | back {
public void callback(final Message nessage) {
/1 obtain areference tothe | ocal context by referencing the i ncom ng nessage.
Local Context injectionContext = Local Context. get(nessage);

/1 set an attribute.
i njectionContext.setAttribute("MAttribute", "Foo");

2.12. Client Logging and Error Handling

2.13. Wire Protocol (J.REP)

ErraiBus implements a JSON-based wire protocol which is used for the federated communication
between different buses. The protocol specification encompasses a standard JSON payload
structure, a set of verbs, and an object marshalling protocol. The protocol is named J.REP. Which
stands for JSON Rich Event Protocol.

2.13.1. Payload Structure

All wire messages sent across are assumed to be JSON arrays at the outermost element,
contained in which, there are 0..n messages. An empty array is considered a no-operation, but
should be counted as activity against any idle timeout limit between federated buses.

Example 2.1. Example J.REP Payload

{"ToSubj ect" : "SoneEndpoint", "Value" : "SoneVal ue" },
{"ToSubj ect" : "SoneQt her Endpoi nt", "Value" : "SoneQ herVal ue"}

Here we see an example of a J.REP payload containing two messages. One bound for an endpoint
named " SonmeEndpoi nt " and the other bound for the endpoint " SomeQ her Endpoi nt " . They both
include a payload element " Val ue" which contain strings. Let's take a look at the anatomy of an
individual message.

25

Chapter 2. Messaging

Example 2.2. An J.REP Message

{
"ToSubject" : "Topi cSubscriber",
"CommandType" : "Subscribe",
"Value " : "happyTopic",
"Repl yTo" : "MTopi cSubscri ber Repl yTo"
}

The message shows a very vanilla J.REP message. The keys of the JSON Object represent
individual message parts , with the values representing their corresponding values. The standard
J.REP protocol encompasses a set of standard message parts and values, which for the purposes
of this specification we’'ll collectively refer to as the protocol verbs.

The following table describes all of the message parts that a J.REP capable client is expected
to understand:

Part Required JSON Type Description

ToSubj ect Yes String Specifies the subject
within the bus, and its
federation, which the
message should be
routed to.

CommandType No String Specifies a command
verb to be transmitted
to the receiving
subject. This is an
optional part of a
message contract,
but is required for
using management
services

Repl yTo No String Specifies to the
receiver what subject
it should reply to

in response to this
message.

Val ue No Any A recommended

but not required
standard payload part
for sending data to
services

26

Payload Structure

Part Required JSON Type Description

PriorityProcessing No Number A processing order
salience attribute.
Messages which
specify priority
processing will be
processed first if they
are competing for
resources with other
messages in flight.
Note: the current
version of ErraiBus
only supports two
salience levels (0
and >1). Any non-
zero salience in
ErraiBus will be given
the same priority
relative to O salience
messages

Error Message No String An accompanying
error message
with any serialized
exception

Thr owabl e No Object If applicable, an
encoded object
representing any
remote exception
that was thrown
while dispatching the
specified service

2.13.1.1. Built-in Subjects

The table contains a list of reserved subject names used for facilitating things like bus management
and error handling. A bus should never allow clients to subscribe to these subjects directly.

Subject Description

dient Bus The self-hosted message bus endpoint on the
client

Ser ver Bus The self-hosted message bus endpoint on the
server

27

Chapter 2. Messaging

Subject Description

ClientBusErrors The standard error receiving service for
clients

As this table indicates, the bus management protocols in J.REP are accomplished using self-
hosted services. See the section on Bus Management and Handshaking Protocols for details.

2.13.2. Message Routing

There is no real distinction in the J.REP protocol between communication with the server, versus
communication with the client. In fact, it assumed from an architectural standpoint that there is
no real distinction between a client and a server. Each bus participates in a flat-namespaced
federation. Therefore, it is possible that a subject may be observed on both the server and the
client.

One in-built assumption of a J.REP-compliant bus however, is that messages are routed within
the auspices of session isolation. Consider the following diagram:

Figure 2.1. Topology of a J.REP Messaging Federation

It is possible for Client A to send messages to the subjects ServiceA and ServiceB . But it is
not possible to address messages to ServiceC . Conversely, Client B can address messages to
ServiceC and ServiceB , but not ServiceA .

2.13.3. Bus Management and Handshaking Protocols

Federation between buses requires management traffic to negotiate connections and manage
visibility of services between buses. This is accomplished through services named d i ent Bus and
Ser ver Bus which both implement the same protocol contracts which are defined in this section.

2.13.3.1. ServerBus and ClientBus commands

Both bus services share the same management protocols, by implementing verbs (or commands)
that perform different actions. These are specified in the protocol with the ConmandType message
part. The following table describes these commands:

Table 2.1. Message Parts for Bus Commands:

Command / Verb Message Parts Description

Connect ToQueue N/A The first message sent by a
connecting client to begin the
handshaking process.

CapabilitiesNotice Capabi | i ti esFl ags A message sent by one bus
to another to notify it of its

28

Bus Management and Handshaking Protocols

Command / Verb Message Parts Description

capabilities during handshake
(for instance long polling or
websockets)

Fi ni shSt at eSync N/A A message sent from one
bus to another to indicate
that it has now provided

all necessary information

to the counter-party bus to
establish the federation.
When both buses have sent
this message to each other,
the federation is considered
active.

Renot eSubscri be Subj ect or Subj ect sLi st A message sent to the remote
bus to notify it of a service

or set of services which it is
capable of routing to.

Renot eUnsubscri be Subj ect A message sent to the remote
bus to notify it that a service
is no longer available.

Di sconnect Reason A message sent to a server
bus from a client bus to
indicate that it wishes to
disconnect and defederate.
Or, when sent from the client
to server, indicates that the
session has been terminated.

Sessi onExpi red N/A A message sent to a client
bus to indicate that its
messages are no longer
being routed because it no
longer has an active session

Hear t beat N/A A message sent from one
bus to another periodically to
indicate it is still active.

Part Required JSON Type Description

CapabilitiesFlags Yes String A comma delimited
string of capabilities
the bus is capable of
us

29

Chapter 2. Messaging

Part Required JSON Type Description

Subj ect Yes String The subject to
subscribe or
unsubscribe from

Subj ect sLi st Yes Array An array of strings
representing a list of
subjects to subscribe
to

2.14. Conversations

Conversations are message exchanges which are between a single client and a service. They
are a fundmentally important concept in ErraiBus, since by default, a message will be broadcast
to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending
back is received by the same client which sent the incoming message. A simple example:

@ber vi ce
public class Hell oWwrl dService inplenments MessageCal | back {
public void call back(CommandMessage nessage) {
/1 Send a nessage to the '"HellowrldCient' on the client that sent us the
/1l the nessage.
MessageBui | der . cr eat eConver sati on(message)
.toSubject("HelloWorl ddient")
.signal ling()
.wth("text", "H There! W're having a reply!")
.noErrorHandling().reply();
1)

Note that the only difference between the example in the previous section and this is the use of
the cr eat eConver sat i on() method with MessageBui | der .

2.15. WebSockets

ErraiBus has support for WebSocket-based communication. When WebSockets are enabled,
capable web browsers will attempt to upgrade their COMET-based communication with the server-
side bus to use a WebSocket channel.

There are two different ways the bus can enable WebSockets. The first uses a sideband server,
which is a small, lightweight server which runs on a different port from the application server. The
second is native JBoss AS 7-based integration.

30

Configuring the sideband server

2.15.1. Configuring the sideband server

Activating the sideband server is as simple as adding the following to the
Errai Servi ce. properti es file:

errai.bus. enabl e_web_socket _server=true

The default port for the sideband server is 8085. You can change this by specifying a port with the
errai . bus. web_socket port property in the Errai Servi ce. properti es file.

Netty Dependencies

Make sure to deploy the required Netty dependencies to your server. If you started
with one of our demos or our tutorial project it should be enough to NOT set net t y-
codec- htt p to provided. All required transitive dependencies should then be part
of your war file (WEB-INF/lib).

2.15.2. Deploying with JBoss AS 7.1.2 (or higher)

This is an alternative approach to the sideband server described in the previous chapter. Make
sure to NOT configure both! It is currently necessary to use the native connector in JBoss
AS for WebSockets to work. So the first step is to configure your JBoss AS instance(s) to
use the native connector by changing the donai n/ confi gur ati on/ st andal one. xm or domai n/
confi guration/ domai n. xn file as follows:

<subsystem xm ns="urn:jboss: donain: web: 1.1" default-virtual-server="default-
host" native="fal se">

to:

<subsystem xm ns="urn:j boss: donai n: web: 1. 1" defaul t-virtual -server="default-
host" native="true">

Verify that the native APR connector is being used

To verify that the native connectors are being used
check your console for the following log message: |NFO
[org. apache. coyote. htt pll. Htt p11Apr Protocol] (MSC service thread
1-6) Starting Coyote HTTP/ 1.1 on http-/127.0.0.1: 8080

31

Chapter 2. Messaging

The important part is org. apache. coyot e. httpll. Htt pLl1Apr Prot ocol . You
should NOT be seeing or g. apache. coyot e. htt p11. Ht t p11Pr ot ocol . You might

have to install the Tomcat native library if not already available on your system.

You will then need to configure the servlet in your application’s web. xml which will provide
WebSocket upgrade support within AS7.

Add the following to the web. xm :

<cont ext - par an»
<par am nane>websocket s- enabl ed</ par am nane>
<par am val ue>t rue</ par am val ue>

</ cont ext - par an>

<cont ext - par an>
<par am name>websocket - pat h- el ement </ par am nane>
<par am val ue>i n. err ai BusWs</ par am val ue>

</ cont ext - par an>

This will tell the bus to enable web sockets support. The websocket - pat h- el enent specified
the path element within a URL which the client bus should request in order to negotiate a
websocket connection. For instance, specifying i n. er r ai Bus\Ws as we have in the snippit above,
will result in attempted negotiation at ht t p: / / <your _ser ver >: <your _port >/ <cont ext _pat h>/
i n. errai Bus\Wa. For this to have any meaningful result, we must add a servlet mapping that will
match this pattern:

<servl| et >

<servl et - name>Err ai WsSer vl et </ ser vl et - name>

<servl et-class>org.j boss. errai.bus. server. servl et.JBossAS7WbhSocket Ser vl et </
servl et-cl ass>

<l oad-on-startup>1</| oad- on- st art up>
</servlet>

<servl et - mappi ng>
<ser vl et - nane>Er r ai WsSer vl et </ ser vl et - nane>
<url -pattern>*.errai BusWs</ ur| - pattern>

</ servl et - mappi ng>

Do not remove the regular ErraiBus servlet mappings!

When configuring ErraiBus to use WebSockets on JBoss AS, you do not remove
the existing servlet mappings for the bus. The WebSocket servlet is in addition to

32

http://<your_server>:<your_port>/<context_path>/in.erraiBusWS
http://<your_server>:<your_port>/<context_path>/in.erraiBusWS

Bus Lifecycle

your current bus servlet. This is because ErraiBus always negotiates WebSocket

sessions over the COMET channel.

Important dependency

Also make sure to deploy the required errai-bus-jboss7-websocket.jar to your
server. If you're using Maven simply add the following dependency to your pom.xmi
file:

<dependency>
<groupl d>org. j boss. errai </ groupl d>
<artifactld>errai-bus-jboss7-websocket</artifactld>
<versi on>${errai.version}</version>

</ dependency>

2.16. Bus Lifecycle

2.16.1. Turning Server Communication On and Off

By default, Errai's client-side message bus attempts to connect to the server as soon as the
ErraiBus module has been loaded. The bus will stay connected until a lengthy (about 45 seconds)
communication failure occurs, or the web page is unloaded.

The application can affect bus communication through two mechanisms:

1. By setting a global JavaScript variable err ai BusRenot eCommuni cati onEnabl ed = fal se
before the GWT scripts load, bus communication with the server is permanently disabled

2. By calling ((d i ent MessageBus) Errai Bus. get()).stop(), the bus disconnects from the
server

To resume server communication after a call to dient MessageBus. stop() or after
communication with the server has exceeded the bus' retry timeout, call ((d i ent MessageBus)
Errai Bus.get()).init(). You can use a BusLi fecycl eLi st ener to monitor the success or
failure of this attempt. See the next section for details.

2.16.2. Observing Bus Lifecycle State and Communication
Status
In a perfect world, the client message bus would always be able to communicate with the server

message bus. But in the real world, there’s a whole array of reasons why the communication link
between the server and the client might be interrupted.

33

Chapter 2. Messaging

On its own, the client message bus will attempt to reconnect with the server whenever
communication has been disrupted. Errai applications can monitor the status of the bus'
communication link (whether it is disconnected, attempting to connect, or fully connected) through
the BusLi f ecycl eLi st ener interface:

cl ass BusStatusLogger inplenents BusLifecycl eLi stener {

@verride

public void busAssoci ati ng(BusLi fecycl eEvent e) {
GM.log("Errai Bus trying to connect...");

}

@verride

public void busOnline(BusLifecycl eEvent e) {
GM. | og("Errai Bus connected!");

}

@verride

public void busOfline(BusLifecycl eEvent e) {
GAT. | og("Errai Bus trying to connect...");

}

@verride

public void busDi sassoci ati ng(BusLi fecycl eEvent e) {
GW. |l og("Errai Bus going into |ocal-only node.");

To attach such a listener to the bus, make the following call in client-side code:

Cl i ent MessageBus bus = (Cient MessageBus) Errai Bus. get();
bus. addLi f ecycl eLi st ener (new BusSt at usLogger ());

2.17. Shadow Services

Shadow Services is a Service that will get invoked when there is no longer a connection with the
server. This is particular helpful when developing an application for mobile. To create a Shadow
Service for a specific Services all you have to do is annotate a new client side implementation
with the @ShadowService:

@hadowSer vi ce
public class SignupShadowService inplenments MessageCal | back {

@verride
public void call back(Message nessage) {

34

Debugging Messaging Problems

Also when you have a RPC based Service you can just add @ShadowService on a client side
implementation to configure it to be the service to get called when there is no network:

@hadowSer vi ce
public class SignupServiceShadow i npl enments Si gnupService {

@verride
public User register(User newUser Chject, String password) throws Registrati onException {

}

In this shadow service we can create logic that will deal with the temporary connection loss. For
instance you could save the data that needs to get send to the server with JPA on the client and
then when the bus get online again sent the data to the server.

2.18. Debugging Messaging Problems

Errai includes a bus monitoring application, which allows you to monitor all of the message
exchange activity on the bus in order to help track down any potential problems It allows you to
inspect individual messages to examine their state and structure.

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your
application’s dependencies. When you run your application in development mode, you will simply
need to add the following JVM options to your run configuration in order to launch the monitor: -
Derrai.tools.bus_nonitor_attach=true

Figure 2.2. ErraiBus Monitor

The monitor provides you a real-time perspective on what's going on inside the bus. The left side
of the main screen lists the services that are currently available, and the right side is the service-
explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the
service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 2.3. ErraiBus Monitor details

The service activity monitor will display a list of all the messages that were transmitted on the bus
since the monitor became active. You do not need to actually have each specific monitor window
open in order to actively monitor the bus activity. All activity on the bus is recorded.

35

Chapter 2. Messaging

The monitor allows you select individual messages, an view their individual parts. Clicking on a
message part will bring up the object inspector, which will allow you to explore the state of any
objects contained within the message, not unlike the object inspectors provided by debuggers in
your favorite IDE. This can be a powerful tool for looking under the covers of your application.

36

Chapter 3.

Dependency Injection

g

Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai IOC to
follow along with this section.

Manual Setup

Checkout the for instructions on how to manually add Errai
IOC to your project.

The core Errai IOC module implements the JSR-330 Dependency Injection specification for in-
client component wiring.

Dependency injection (DI) allows for cleaner and more modular code, by permitting the
implementation of decoupled and type-safe components. By using DI, components do not need
to be aware of the implementation of provided services. Instead, they merely declare a contract
with the container, which in turn provides instances of the services that component depends on.

Classpath Scanning and ErraiApp.properties

Errai only scans the contents of classpath locations (JARs and directories) that
have a file called ErraiApp.properties at their root. If dependency injection is not
working for you, double-check that you have an Er r ai App. properti es in every
JAR and directory that contains classes Errai should know about.

A simple example:

public class MyLittl ed ass {
private final TimeService tineService;

@ nj ect

public MyLittl el ass(Ti meService tineService) ({
this.tinmeService = tineService;

public void printTinme() {
Systemout.println(this.tineService.getTine());

37

Chapter 3. Dependency Injection

In this example, we create a simple class which declares a dependency using @ nj ect for
the interface Ti neSer vi ce. In this particular case, we use constructor injection to establish the
contract between the container and the component. We can similarly use field injection to the
same effect:

public class MyLittl ed ass {
@ nj ect
private TineService timeService;

public void printTinme() {
Systemout.println(this.timeService.getTine());

In order to inject Ti meSer vi ce , you must annotate it with @\ppl i cati onScoped or the Errai DI
container will not acknowledge the type as a bean.

@\ppl i cat i onScoped
public class TinmeService {

}

Best Practices

Although field injection results in less code, a major disadvantage is that you cannot
create immutable classes using the pattern, since the container must first call the

default, no-argument constructor, and then iterate through its injection tasks, which
leaves the potential albeit remote that the object could be left in an partially or
improperly initialized state. The advantage of constructor injection is that fields can
be immutable (final), and invariance rules applied at construction time, leading to
earlier failures, and the guarantee of consistent state.

3.1. Container Wiring

In contrast to Gin [http://code.google.com/p/google-gin/] , the Errai IOC container does not provide
a programmatic way of creating and configuring injectors. Instead, container-level binding rules are
defined by implementing a Pr ovi der , which is scanned for and auto-discovered by the container.

A Provi der is essentially a factory which produces type instances within in the container, and
defers instantiation responsibility for the provided type to the provider implementation. Top-level
providers use the standard j avax. i nj ect . Pr ovi der <T> interface.

38

http://code.google.com/p/google-gin/
http://code.google.com/p/google-gin/

Container Wiring

Types made available as top-level providers will be available for injection in any managed
component within the container.

Out of the box, Errai 10C implements these default top-level providers, all defined in the
org.jboss.errai.ioc.client.api.builtinpackage:

e CallerProvider : Makes RPC Cal | er <T> objects available for injection.

» Di sposerProvi der : Makes Errai loC Di sposer <T> objects available for injection.

e InitBallotProvider : Makes instances of I ni t Bal | ot available for injection.

e | OCBeanManager Provi der : Makes Errai’s client-side bean manager, C i ent BeanManager ,
available for injection.

* MessageBusProvi der : Makes Errai’s client-side MessageBus singleton available for injection.

* Request Di spat cher Provi der : Makes an instance of the Request Di spat cher available for
injection.

* Root Panel Provi der : Makes GWT’s Root Panel singleton injectable.
* Sender Provi der : Makes MessageBus Sender <T> objects available for injection.
Implementing a Provi der is relatively straight-forward. Consider the following two classes:

TimeService.java

public interface Ti neService {
public String getTime();

TimeServiceProvider.java

@ OCPr ovi der
@i ngl et on
public class TinmeServiceProvider inplenents Provider<Ti neService> {

@verride

public TimeService get() {

return new TineService() {
public String getTinme() {
return "It's mdni ght somewhere!";

39

Chapter 3. Dependency Injection

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

Cui ce. creat el nj ector(new Abstract Modul e() {
public void configure() {
bi nd(Ti neSer vi ce. cl ass).toProvi der (Ti neServi ceProvider. cl ass);

}
}) . getl nstance(MyApp. cl ass);

As shown in the above example code, the annotation @ OCPr ovi der is used to denote top-level
providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are regular beans, so they can inject dependencies particularly
from other top-level providers as necessary.

3.2. Wiring server side components

By default, Errai uses Google Guice to wire server-side components. When deploying
services on the server-side, it is currently possible to obtain references to the MessageBus,
Request Di spat cher, the Errai Ser vi ceConfi gur at or, and Er r ai Ser vi ce by declaring them as
injection dependencies in Service classes, extension components, and session providers.

Alternatively, supports CDI based wiring of server-side components. See the chapter on Errai CDI
for more information.

3.3. Scopes

Out of the box, the IOC container supports three bean scopes, @ependent, @i ngl et on and
@nt ryPoi nt . The singleton and entry-point scopes are roughly the same semantics.

3.3.1. Dependent Scope

In Errai 10C, all client types are valid bean types if they are default constructable or can
have construction dependencies satisfied. These unqualified beans belong to the dependent
pseudo-scope. See: Dependent Psuedo-Scope from CDI Documentation [http://docs.jboss.org/
weld/reference/latest/en-US/html/scopescontexts.html#d0e1997]

Additionally, beans may be qualified as @ppl i cati onScoped, @i ngl et on or @nt ryPoi nt.
Although @\pplicationScoped and @5ingleton are supported for completeness and
conformance, within the client they effectively result in behavior that is identical.

40

http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997
http://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html#d0e1997

Built-in Extensions

Example 3.1. Example dependent scoped bean
public voi d MyDependent ScopedBean {
private final Date createdDate;

publ i c MyDependent ScopedBean {
createdDate = new Date();

Example 3.2. Example ApplicationScoped bean

@\ppl i cati onScoped
public void MyClientBean {
@ nj ect MyDependent ScopedBean bean;

I

Availability of dependent beans in the client-side
BeanManager

As is mentioned in the bean manager documentation, only beans that are explicitly
scoped will be made available to the bean manager for lookup. So while it is not
necessary for regular injection, you must annotate your dependent scoped beans
with @ependent if you wish to dynamically lookup these beans at runtime.

3.4. Built-in Extensions

3.4.1. Bus Services

As Errai 10C provides a container-based approach to client development, support for Errai
services are exposed to the container so they may be injected and used throughout your
application where appropriate. This section covers those services.

3.4.1.1. @Service

The org.jboss.errai.bus.server.annotations. Service annotation is used for binding
service endpoints to the bus. Within the Errai IOC container you can annotate services and have
them published to the bus on the client (or on the server) in a very straight-forward manner:

41

Chapter 3. Dependency Injection

Example 3.3. A simple message receiving service

@bervi ce
public class MyService inplenents MessageCal | back {
public void call back(Message nmessage) {
Il

As with server-side use of the annotation, if a service name is not explicitly specified, the underlying
class name or field name being annotated will be used as the service name.

3.4.1.2. @Local

The org.jboss. errai.bus. server. api.Local annotation is used in conjunction with the
@ser vi ce annotation to advertise a service only for visibility on the local bus and thus, cannot
receive messages across the wire for the service.

Example 3.4. A local only service

@ervi ce @ocal
public class MyLocal Service inplenents MessageCal | back {
public void call back(Message nessage) ({
I 1

3.4.1.3. Lifecycle Impact of Services

Services which are registered with ErraiBus via the bean manager through use of the @er vi ce
annotation, have de-registration hooks tied implicitly to the destruction of the bean. Thus,
destruction of the bean implies that these associated services are to be dereferenced.

3.4.2. Client Components

The 10C container, by default, provides a set of default injectable bean types. They range from
basic services, to injectable proxies for RPC. This section covers the facilities available out-of-
the-box.

3.4.2.1. MessageBus

The type org. j boss. errai. bus. client.franmework. MessageBus is globally injectable into any
bean. Injecting this type will provide the instance of the active message bus running in the client.

42

Client Components

Example 3.5. Injecting a MessageBus

@ nj ect MessageBus bus;

3.4.2.2. RequestDispatcher

The type org. j boss. errai . bus. client.franmework. Request Di spat cher is globally injectable
into any bean. Injecting this type will provide a Request Di spat cher instance capable of delivering
any messages provided to it, to the the MessageBus.

Example 3.6. Injecting a RequestDispatcher

@ nj ect Request Di spatcher di spatcher;

3.4.2.3. Caller<?>

The type or g. j boss. errai . common. cl i ent . api . Cal | er <?> is a globally injectable RPC proxy.
RPC proxies may be provided by various components. For example, JAX-RS or Errai RPC.
The proxy itself is agnostic to the underlying RPC mechanism and is qualified by it's type
parameterization.

For example:

Example 3.7. An example Caller<?> proxy

public void MydientBean {
@ nj ect
private Call er<M/Rpclnterface> rpcCaller;

I 1

@tvent Handl er (" button™)
public void onButtond ick(C ickHandl er handler) {
rpcCal |l er.call (new Renpt eCal | back<Voi d>() {
public void callback(Void void) {
/1l put code here that should execute after RPC response arrives

}
). cal | SoneMet hod();

The above code shows the injection of a proxy for the RPC remote interface, MyRpcl nt er f ace.
For more information on defining RPC proxies see Remote Procedure Calls (RPC).

43

Chapter 3. Dependency Injection

3.4.2.4. Sender<?>

The org.jboss.errai.ioc.support.bus.client.Sender<?> interface is the lower-level
counterpart to the Cal | er <?> interface described above. You can inject a Sender to send low-
level ErraiBus messages directly to subscribers on any subject.

For example:

@ nj ect
@oSubj ect ("Li stCapitializationService")
Sender <Li st <Stri ng>> | i st Sender ;

... 1

@vent Handl er (" button")
public void onButtond ick(d ickHandl er handler) {
Li st<String> nyListOfStrings = getSel ectedC ti esFronfForm);
I'i st Sender. send(nyLi st Of Strings, new MessageCal | back() {
public void call back(Message reply) {
/1 do stuff with reply

The Sender. send() method is overloaded. The variant demonstrated above takes a value and a
MessageCallback to reply receive a reply (assuming the subscriber sends a conversational reply).
The following variants are available:

e send(T)

e send(T, ErrorCallback)

e send(T, MessageCall back)

e send(T, MessageCall back, ErrorcCall back)

The reply-to service can also be specified declaratively using the @Repl yTo annotation. This allows
the app to receive conversational replies even when using the send() variants that do not take
a MessageCal | back:

@ nj ect

@oSubj ect ("ListCapitializationService")
@Repl yTo("Cl i entListService")

Sender <Li st <Stri ng>> |i st Sender;

I

44

Lifecycle Tools

@vent Handl er ("button")

public void onButtond ick(C ickHandl er handler) {
Li st<String> nyListO Strings = get Sel ectedG ti esFronform);
I i st Sender. send(myLi st Of Strings);

@i ngl et on

@bervi ce

public static class dientListService inplenents MessageCal |l back {
@verride

public void cal |l back(Message message) {
/1 do stuff with nmessage

These Sender <?> features are just convenient wrappers around the full-featured programmatic
ErraiBus API. See Messaging API Basics and Conversations for full information about low-level
ErraiBus communication.

3.4.3. Lifecycle Tools

A problem commonly associated with building large applications in the browser is ensuring that
things happen in the proper order when code starts executing. Errai I0C provides you tools
which permit you to ensure things happen before initialization, and forcing things to happen after
initialization of all of the Errai services.

3.4.3.1. Controlling Startup

In order to prevent initialization of the the bus and it's services so that you can do
necessary configuration, especially if you are writing extensions to the Errai framework
itself, you can create an implicit startup dependency on your bean by injecting an
org.jboss.errai.ioc.client.api.lnitBallot<?>.

Example 3.8. Using an InitBallot to Control Startup

@i ngl et on
public class M/dientBean {
@nj ect InitBallot<MydientBean> ballot;

@Post Const ruct
public void doStuff() {

/[l ... do sone work ...

bal l ot.voteForlnit();

45

Chapter 3. Dependency Injection

3.4.3.2. Performing Tasks After Initialization

Sending RPC calls to the server from inside constructors and @ost Const ruct methods in Errai
is not always reliable due to the fact that the bus and RPC proxies initialize asynchronously with
the rest of the application. Therefore it is often desirable to have such things happen in a post-
initialization task, which is exposed in the d i ent MessageBus API. However, it is much cleaner to
use the @fterlnitializationannotation on one of your bean methods.

Example 3.9. Using @Afterinitialization to do something after startup

@i ngl et on
public class MyCientBean {
@fterlnitialization
public void doStuffAfterinit() {
[l ... do sonme work ...

3.4.4. Timed Methods

The @i med annotation allows scheduling method executions on managed client-side beans.
Timers are automatically scoped to the scope of the corresponding managed bean and participate
in the same lifecycle (see Bean Lifecycle for details).

In the following example the updat eTi me method is invoked repeatedly every second.

@i nmed(type = Ti mer Type. REPEATI NG, interval = 1, timeUnit = Ti meUnit. SECONDS)
private void updateTine() {
ti meWdget.setTi me(SystemcurrentTimeMIIis);

For delayed one-time execution of methods t ype = Ti mer Type. DELAYED can be used instead.

3.5. Client-Side Bean Manager

It may be necessary at times to manually obtain instances of beans managed by Errai
IOC from outside the container managed scope or creating a hard dependency from your
bean. Errai 10C provides a simple client-side bean manager for handling these scenarios:
org.jboss.errai.ioc.client.container.dientBeanManager.

As you might expect, you can inject a bean manager instance into any of your managed beans.
If you use Errai IOC in its default mode you will need to inject the synchronous bean manager (

org.jboss.errai.ioc.client.container.SyncBeanManager).

46

Looking up beans

If you have asynchronous IOC mode enabled simply inject the asynchronous bean
manager (org.jboss.errai.ioc.client.container.async. AsyncBeanManager) instead.
Asynchronous 10C brings support for code splitting [http://www.gwtproject.org/doc/latest/
DevGuideCodeSplitting.html] . That means that any bean annotated with @.oadAsync can be
compiled into a separate JavaScript file that's downloaded when the bean is first needed on the
client. @oadAsync also allows to specify a fragment name using a class literal. Using GWT 2.6.0
or higher, all types with the same fragment name will be part of the same JavaScript file.

Example 3.10. Injecting the client-side bean manager
publi ¢ MyManagedBean {
@ nj ect SyncBeanManager nanager;

/1 cl ass body

If you need to access the bean manager outside a managed bean, such as in a unit test, you can
access it by calling org. j boss. errai .ioc.client.container.|CC. get BeanManager ()

3.5.1. Looking up beans

Looking up beans can be done through the use of the | ookupBeans() method. Here's a basic
example:

Example 3.11. Example lookup of a bean

public MyManagedBean {
@ nj ect SyncBeanManager nanager;

public void | ookupBean() {
| OCBeanDef <Si npl eBean> bean = nanager. | ookupBean(Si npl eBean. cl ass) ;

if (bean !'= null) {
/'l get the instance of the bean
Si npl eBean i nst = bean. getl nstance();

In this example we lookup a bean class named Si npl eBean . This example will succeed assuming
that Si npl eBean is unambiguous. If the bean is ambiguous and requires qualification, you can
do a qualified lookup like so:

47

http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html
http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html
http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html

Chapter 3. Dependency Injection

Example 3.12. Looking up beans with qualifiers

MyQualifier qual = new MyQualifier() {
publi c annotationType() {
return MyQualifier.class;

MO herQualifier qual2 = new MyOtherQualifier() {
public annotationType() {
return MyQtherQualifier.class;

/'l pass qualifiers to ClientBeanManager. | ookupBeans
| OCBeanDef <Si npl eBean> bean = beanManager .| ookupBean(Si npl eBean. cl ass, qual, qual 2);

In this example we manually construct instances of qualifier annotations in order to pass it to the
bean manager for lookup. This is a necessary step since there’s currently no support for annotation
literals in Errai client code.

3.5.2. Availability of beans

Not all beans that are available for injection are available for lookup from the bean manager
by default. Only beans which are explicitly scoped are available for dynamic lookup. This is an
intentional feature to keep the size of the generated code down in the browser.

3.6. Alternatives and Mocks

3.6.1. Alternatives

It may be desirable to have multiple matching dependencies for a given injection point with
the ability to specify which implementation to use at runtime. For instance, you may have
different versions of your application which target different browsers or capabilities of the browser.
Using alternatives allows you to share common interfaces among your beans, while still using
dependency injection, by exporting consideration of what implementation to use to the container’s
configuration.

Consider the following example:
@i ngl eton @\ ternative

public class MbileView inplenents View {
.1

48

Test Mocks

and

@i ngl eton @\ ternative
public class DesktopView inplenents View {
[N

In our controller logic we in turn inject the Vi ew interface:

@nt r yPoi nt

public class MyApp {
@ nj ect
Vi ew vi ew,

Il

This code is unaware of the implementation of Vi ew, which maintains good separation of
concerns. However, this of course creates an ambiguous dependency on the Vi ew interface as
it has two matching subtypes in this case. Thus, we must configure the container to specify
which alternative to use. Also note, that the beans in both cases have been annotated with

javax.enterprise.inject.Alternative.

In your Errai App. properties for the module, you can simply specify which active alternative
should be used:

errai.ioc.enabl ed. alternati ves=org. f oo. Mobi |l eVi ew

You can specify multiple alternative classes by white space separating them:

errai.ioc.enabl ed. alternati ves=org. foo. MbileVi ew \
org. foo. HTM.5Ori entation \
org. f oo. Mobi | eSt or age

You can only have one enabled alternative for a matching set of alternatives, otherwise you will
get ambiguous resolution errors from the container.

3.6.2. Test Mocks

Similar to alternatives, but specifically designed for testing scenarios, you can replace beans with
mocks at runtime for the purposes of running unit tests. This is accomplished simply by annotating

49

Chapter 3. Dependency Injection

abeanwiththeorg. j boss. errai.ioc.client.api.Test Mck annotation. Doing so will prioritize
consideration of the bean over any other matching beans while running unit tests.

Consider the following:

@\ppl i cati onScoped
public class User Managenent| npl inplenents User Managenent {
public List<User> listUsers() {
/1 do user listy things!

You can specify a mock implementation of this class by implementing its common parent type
(User Managenent) and annotating that class with the @rest Mock annotation inside your test
package like so:

@est Mock @\ppli cati onScoped
public class MdckUser Managenent | npl i npl ements User Managenent {
public List<User> listUsers() {
/1 return only a test user.
return Coll ections.singletonList(TestUser. | NSTANCE);

In this case, the container will replace the UserManagenentlnpl with the
MockUser Managenent | npl automatically when running the unit tests.

The @est Mock annotation can also be used to specify alternative providers during test execution.
For example, it can be used to mock a Cal | er <T>. Cal | er s are used to invoke RPC or JAX-RS
endpoints. During tests you might want to replace theses callers with mock implementations. For
details on providers see Container Wiring.

@rest Mock @ OCPr ovi der
public class MdckedHappyServi ceCall er Provi der inplenents Contextual TypeProvi der <Cal | er <HappySet

@verride
public Cal | er<HappyServi ce> provi de(Cl ass<?>[] typeargs, Annotation[] qualifiers) {
return new Cal | er <HappyService>() {

50

Bean Lifecycle

3.7. Bean Lifecycle

All beans managed by the Errai IOC container support the @ost Const ruct and @r eDest r oy
annotations.

Beans which have methods annotated with @ost Construct are guaranteed to have those
methods called before the bean is put into service, and only after all dependencies within its graph
has been satisfied.

Beans are also guaranteed to have their @r eDest r oy annotated methods called before they are
destroyed by the bean manager.

Important

This cannot be guaranteed when the browser DOM is destroyed prematurely due
to: closing the browser window; closing a tab; refreshing the page, etc.

3.7.1. Destruction of Beans

Beans under management of Errai IOC, of any scope, can be explicitly destroyed through the
client bean manager. Destruction of a managed bean is accomplished by passing a reference to
the dest r oyBean() method of the bean manager.

Example 3.13. Destruction of bean

publi ¢ MyManagedBean {
@ nj ect SyncBeanManager nanager;

public void createABeanThenDestroylt() {
/1 get a new bean.
Si npl eBean bean = nanager .| ookupBean(Si npl eBean. cl ass). get | nstance();

bean. sendMessage("Sorry, | need to di spose of you now');

/'l destroy the bean!
manager . dest r oyBean(bean) ;

When the bean manager "destroys" the bean, any pre-destroy methods the bean declares are
called, it is taken out of service and no longer tracked by the bean manager. If there are references
on the bean by other objects, the bean will continue to be accessible to those objects.

51

Chapter 3. Dependency Injection

Important

Container managed resources that are dependent on the bean such as bus service
endpoints or CDI event observers will also be automatically destroyed when the
bean is destroyed.

Another important consideration is the rule, "all beans created together are destroyed together."
Consider the following example:

Example 3.14. SimpleBean.class

@ependent
public class SinpleBean {
@ nj ect @\ew Anot her Bean anot her Bean;

publ i c Anot her Bean get Anot her Bean() {
return anot her Bean;

@°r eDest r oy
private void cleanUp() {
/1 do sonme cl eanup tasks

Example 3.15. Destroying bean from subgraph

publi c MyManagedBean {
@ nj ect SyncBeanManager nanager;

public void createABeanThenDestroylt() {
/1 get a new bean.
Si npl eBean bean = manager .| ookupBean(Si npl eBean. cl ass) . get | nstance();

/1l destroy the AnotherBean reference frominside the bean
manager . dest r oyBean(bean. get Anot her Bean()) ;

In this example we pass the instance of Anot her Bean, created as a dependency of Si npl eBean,
to the bean manager for destruction. Because this bean was created at the same time as its
parent, its destruction will also result in the destruction of Si npl eBean; thus, this action will result
in the @r eDest r oy[code]cl eanUp() method of Si npl eBean being invoked.

52

Destruction of Beans

3.7.1.1. Disposers

Another way which beans can be destroyed is through the use of the injectable
org.jboss.errai.ioc.client.api.D sposer<T> class. The class provides a straight forward
way of disposing of bean type.

For instance:

Example 3.16. Destroying bean with disposer

public MyManagedBean {
@nj ect @New Si npl eBean nmyNewSi npl eBean;
@ nj ect Di sposer <Si npl eBean> si npl eBeanDi sposer ;

public void destroyMyBean() {
si npl eBeanDi sposer . di spose(nmyNewSi npl eBean) ;

53

54

Chapter 4.

Erral CDI

w Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai CDI to
follow along with this section.

Manual Setup Section

CDI (Contexts and Dependency Injection) is the Jave EE standard (JSR-299) for handling
dependency injection. In addition to dependency injection, the standard encompasses component
lifecycle, application configuration, call-interception and a decoupled, type-safe eventing
specification.

The Errai CDI extension implements a subset of the specification for use inside of client-side
applications within Errai, as well as additional capabilities such as distributed eventing.

Errai CDI does not currently implement all life cycles specified in JSR-299 or interceptors. These
deficiencies may be addressed in future versions.

Important

Errai CDI is implemented as an extension on top of the Errai IOC Framework
(see Dependency Injection), which itself implements JSR-330. Inclusion of the CDI
module your GWT project will result in the extensions automatically being loaded
and made available to your application.

a file called ErraiApp.properties

55

Chapter 4. Errai CDI

4.1. Features and Limitations

Beans that are deployed to a CDI container will automatically be registered with Errai and exposed
to your GWT client application. So, you can use Errai to communicate between your GWT client
components and your CDI backend beans.

Errai CDI based applications use the same annotation-driven programming model as server-side
CDI components, with some notable limitations. Many of these limitations will be addressed in
future releases.

1. Thereis no support for CDI interceptors in the client. Although this is planned in a future release.
2. Passivating scopes are not supported.

3. The JSR-299 SPI is not supported for client side code. Although writing extensions for the client
side container is possible via the Errai IOC Extensions API.

4. The @yped annotation is unsupported.
5. The @nt er cept or annotation is unsupported.

6. The @ecor at or annotation is unsupported.

4.1.1. Other features

The CDI container in Errai is built around the Errai IOC module, and thus is a superset of the
existing functionality in Errai IOC. Thus, all features and APIs documented in Errai IOC are
accessible and usable with this Errai CDI programming model.

4.2. Events

Any CDI managed component may produce and consume events [http://docs.jboss.org/weld/
reference/latest/en-US/html/events.html] . This allows beans to interact in a completely decoupled
fashion. Beans consume events by registering for a particular event type and optional qualifiers.
The Errai CDI extension simply extends this concept into the client tier. A GWT client application
can simply register an Cbserver for a particular event type and thus receive events that are
produced on the server-side. Likewise and using the same API, GWT clients can produce events
that are consumed by a server-side observer.

Let's take a look at an example.

Example 4.1. FraudClient.java

public class FraudCient extends LayoutPanel {

@ nj ect
private Event<AccountActivity> event; (1)

private HTM. responsePanel ;

56

http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html

Events

public Frauddient() {
super (new BoxLayout (BoxLayout. Ori entati on. VERTI CAL)) ;

@ost Const ruct
public void buildU () {
Button button = new Button("Create activity", new CickHandl er() {
public void ondick(dickEvent clickEvent) ({
event.fire(new AccountActivity());

}
1
responsePanel = new HTM.();
add(button);
add(responsePanel);

public void processFraud(@bserves @etected Fraud fraudEvent) { (2)
responsePanel . set Text ("Fraud detected: " + fraudEvent.getTi mestanp());

Two things are noteworthy in this example:

1. Injection of an Event dispatcher proxy
2. Creation of an Qoser ver method for a particular event type

The event dispatcher is responsible for sending events created on the client-side to the server-
side event subsystem (CDI container). This means any event that is fired through a dispatcher
will eventually be consumed by a CDI managed bean, if there is an corresponding Cbser ver
registered for it on the server side.

In order to consume events that are created on the server-side you need to declare an client-side
observer method for a particular event type. In case an event is fired on the server this method
will be invoked with an event instance of type you declared.

To complete the example, let’s look at the corresponding server-side CDI bean:
Example 4.2. AccountService.java

@\ppl i cati onScoped

public class Account Service {

@nject @etected
private Event <Fraud> event;

public void watchActivity(@bserves AccountActivity activity) {

57

Chapter 4. Errai CDI

Fraud fraud = new Fraud(SystemcurrentTimeM I1lis());
event.fire(fraud);

4.2.1. Conversational events

A server can address a single client in response to an event annotating event types as
@onver sat i onal . Consider a service that responds to a subscription event.

Example 4.3. SubscriptionService.java

@\ppl i cati onScoped
public class SubscriptionService {

@ nj ect
private Event<Docunents> wel coneEvent;

public void onSubscription(@bserves Subscription subscription) {
Document docs = creat eWel comePackage(subscri ption);
wel coneEvent . fire(docs);

And the Docunent class would be annotated like so:

Example 4.4. Document.java

@Conver sati onal @Portabl e
public class Docunent {
/!l code here

As such, when Docunent events are fired, they will be limited in scope to the initiating
conversational contents which are implicitly inferred by the caller. So only the client which fired
the Subscri pti on event will receive the fired Document event.

4.2.2. Local Events

The simplest way to stop a CDI Event from being broadcast over the wire is to avoid annotating
the type with @or t abl e. But in some cases you may wish to send a type over the network with
Errai RPC or the Message Bus, but only fire it locally as a CDI Event.

This can be accomplished by annotating a type with @ocal Event, as in this example:

58

Client-Server Event Example

@ortabl e @uocal Event
publ i ¢ Documnent Change {
private String diff;

public String getDi ff() {
return diff;

public void setDiff(String diff) {
this.diff = diff;

Because of the @ort abl e annotation instances of Docunent Change can be sent over the wire
via RPC calls or bus messages, but because of the @ ocal Event annotation they will not be sent
over the network if fired via a CDI Event.

4.2.3. Client-Server Event Example

A key feature of the Errai CDI framework is the ability to federate the CDI eventing bus between
the client and the server. This permits the observation of server produced events on the client,
and vice-versa.

Example server code:

Example 4.5. MyServerBean.java

@\ppl i cati onScoped
public class MyServerBean {
@ nj ect
Event <MyResponseEvent > nyResponseEvent ;

public void nmydient Cbserver(@bserves M/Request Event event) {
M/ResponseEvent response;

if (event.isThankYou()) {
// aww, that's nice!
response = new MyResponseEvent ("Wl |, you're wel cone!");
}
el se {
/1 how rude!
response = new MyResponseEvent ("Wat? Nobody says 'thank you' anynore?");

nmyResponseEvent . fire(response);

59

Chapter 4. Errai CDI

Domain-model:

Example 4.6. MyRequestEvent.java

@ortabl e
public class MyRequest Event ({
private bool ean thankYou;

publ i c MyRequest Event (bool ean t hankYou) {

set ThankYou(t hankYou) ;

public void set ThankYou(bool ean t hankYou) {
t hi s.thankYou = t hankYou;

publi ¢ bool ean i sThankYou() ({
return thankYou;

Example 4.7. MyResponseEvent.java

@ortabl e
public class MyResponseEvent {
private String nmessage;

publi ¢ MyRequest Event (String message) {
set Message(nessage) ;

public void set Message(String nessage) ({
t hi s. nessage = nessage;

public String get Message() {
return nessage;

Client application logic:

60

Producers

Example 4.8. MyClientBean.java

@nt r yPoi nt
public class MyClientBean {
@ nj ect
Event <MyRequest Event > r equest Event ;

public void myResponseCbserver (@bserves MyResponseEvent event) {
W ndow. al ert ("Server replied: " + event.getMessage());

@ost Const r uct
public void init() {
Button thankYou = new Button("Say Thank You!");
t hankYou. addd i ckHandl er (new C i ckHandl er () {
public void onCick(dickEvent event) {
request Event. fi re(new MyRequest Event (true));

Button nothing = new Button("Say nothing!");
not hi ng. addd i ckHandl er (new C i ckHandl er () {
public void onCick(dickEvent event) ({
request Event. fire(new MyRequest Event (f al se));

Vertical Panel vPanel = new Verti cal Panel ();
vPanel . add(t hankYou) ;
vPanel . add(not hi ng) ;

Root Panel . get (). add(vPanel) ;

4.3. Producers

Producer methods and fields act as sources of objects to be injected. They are useful when
additional control over object creation is needed before injections can take place e.g. when you
need to make a decision at runtime before an object can be created and injected.

Example 4.9. App.java

@ent r yPoi nt
public class App {

61

Chapter 4. Errai CDI

@r oduces @support ed
private MyBaseW dget createWdget () ({
return (Canvas.isSupported()) ? new MyHt ml 5W dget () : new MyDef aul t Wdget () ;

}

Example 4.10. MyComposite.java

@\ppl i cati onScoped
public class MyConposite extends Conposite {

@nj ect @support ed
private MyBaseW dget wi dget;

Producers can also be scoped themselves. By default, producer methods are dependent-scoped,
meaning they get called every time an injection for their provided type is requested. If a producer
method is scoped @i ngl et on for instance, the method will only be called once, and the bean
manager will inject the instance from the first invokation of the producer into every matching
injection point.

Example 4.11. Singleton producer

public class App {

@r oduces @i ngl et on
private MyBean produceMyBean() {
return new MyBean();

For more information on CDI producers, see the CDI specification [http://docs.jboss.org/
cdi/spec/1.0/html/] and the WELD reference documentation [http://seamframework.org/Weld/
WeldDocumentation] .

4.4. Safe dynamic lookup

As an alternative to using the bean manager to dynamically create beans, this can be
accomplished in a type-safe way by injecting a j avax. ent erpri se. i nj ect. | nst ance<T>.

62

http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation

Deploying Errai CDI

For instance, assume you have a dependent-scoped bean Bar and consider the following:

public class Foo {
@ nj ect | nstance<Bar> barl nstance;

public void pingNewBar () {
Bar bar = barlnstance.get();
bar . pi ng();

In this example, calling bar I nst ance. get () returns a new instance of the dependent-scoped
bean Bar .

4.5. Deploying Errai CDI

The CDI integration is a plugin to the Errai core framework and represents a CDI portable
extension. Which means it is discovered automatically by both Errai and the CDI container. In
order to use it, you first need to understand the different runtime models involved when working
GWT, Errai, and CDI.

Typically a GWT application lifecycle begins in Development Mode [http://code.google.com/
webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html] and finally a web application
containing the GWT client code will be deployed to a target container (Servlet Engine, Application
Server). This is no way different when working with CDI components to back your application.

What's different however is availability of the CDI container across the different runtimes. In
GWT development mode and in a pure servlet environment you need to provide and bootstrap
the CDI environment on your own. While any Java EE 6 Application Server already provides a
preconfigured CDI container. To accomodate these differences, we need to do a little trickery
when executing the GWT Development Mode and packaging our application for deployment.

w Plugin Tip

Use the Errai Forge Addon Add Errai in Project command to setup development
mode, usable for any Errai application, including one with Errai CDI.

Manual Setup Section

63

http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html

64

Chapter 5.

Marshalling

Errai includes a comprehensive marshalling framework which permits the serialization of domain
objects between the browser and the server. From the perspective of GWT, this is a complete
replacement for the provided GWT serialization facilities and offers a great deal more flexibility.
You can use it with your own application-specific domain models as well as preexisting models,
including classes from third-party libraries using configuration files or the custom definitions API.

m Plugin Tip

If you used the Errai Forge Addon Add Errai Features command to add Errai
Messaging or Errai CDI then Marshalling is already available to you.

5.1. Mapping Your Domain

All classes that you intend to be marshalled between the client and the server must be exposed
to the marshalling framework explicitly. There are several ways to do that, and this section will
take you through the different approaches.

5.1.1. @Portable and @NonPortable

The easiest way to make a Java class eligible for serialization with Errai Marshalling is to mark it
with the org. j boss. errai . common. cl i ent. api . annot at i ons. Por t abl e annotation. This tells
the marshalling system to generate marshalling and demarshalling code for the annotated class
and all of its nested classes.

The mapping strategy that will be used depends on how much information you provide about your
model up-front. If you simply annotate a domain type with @ort abl e and do nothing else, the
marshalling system will use an exhaustive strategy to determine how to serialize and deserialize
instances of that type and its nested types.

The Errai marshalling system works by enumerating all of the Portable types it can find (by any
of the three methods discussed in this section of the reference guide), eliminating all the non-
portable types it can find (via @\onPor t abl e annotations and entries in Err ai App. pr operti es),
then enumerating the marshallable properties that make up each remaining portable entity type.
The rules that Errai uses for enumerating the properties of a portable entity type are as follows:

« If an entity type has a field called f oo, then that entity has a property called f oo unless the field
is marked st at i ¢ or [code]+transient.

Note that the existence of methods called get Foo(), set Foo(), or both, does not mean that the
entity has a property called f oo. Errai Marshalling always works from fields when discovering
properties.

65

Chapter 5. Marshalling

When reading a field f oo, Errai Marshalling will call the method get Foo() in preference to direct
field access if the get Foo() method exists.

When writing a field f oo, Errai Marshalling gives first preference to a parameter of the mapping
constructor (defined below) annotated with @mapsTo("f 0o") . Failing this, Errai Marshalling will
the method set Foo() if it exists. As a last resort, Errai Marshalling will use direct field access to
write the value of f oo.

Each field is mapped independently according to the above priority rules. Portable classes can
rely on a mix of constructor, setter/getter, and field access.

For de-marshalling a @or t abl e type, Errai must know how to obtain a new instance of that type.
To do this, it selects a mapping constructor (which could literally be a constructor, but could also
be a static factory method) using the following rules:

« If the entity has a constructor where every argument is annotated with @apsTo, then this is the
mapping constructor. The constructor doesn’t have to be public.

« Otherwise, if the entity has a public static method whose return type matches the entity type
and every argument is annotated with @kpsTo, then it is the mapping constructor. Unlike a
constructor, such a method is free to return an instance of a subtype of the marshalled type,
or resolve an instance from a cache. In this case, do keep in mind that left-over properties
not covered by the method’s @vapsTo parameters will still be written by setters and direct field
access.

« Otherwise, if the entity has a public no-arguments constructor (including the one the Java
compiler provides in the absence of explicit constructors), it is the mapping constructor.

If no suitable mapping constructor can be found on a type marked @ort abl e, it is a compile-
time error.

Now let’s take a look at some common examples of how this works.

5.1.1.1. Example: A Common Mutable Bean

@ort abl e

public class Person {
private String nane;
private int age;

public String getName() {

return nane;

public void set Nane(String name) {
thi s. nane = nane;

66

@Portable and @NonPortable

public int getAge() {
return age;

public void setAge(int age) {
thi s. age = age;

This class is a straightforward mutable bean. Errai will read and write the name and age properties
via the setter and getter methods. It will create new instances of the type using the default no-args
public constructor that the Java compiler generated implicitly.

5.1.1.2. Example: An Immutable Entity with a Public Constructor

It's always good to aim for truly immutabile value types wherever practical, and Errai's marshalling
system does not force you to compromise on this ideal.

@ortabl e

public final class Person {
private final String nane;
private final int age;

publ i c Person(@mapsTo("nanme") String nane, @mapsTo("age") int age) {

thi s. nanme = nane;
thi s.age = age;

public String getName() {
return namne;

public int getAge() {
return age;

Both fields are final, so they cannot be written by setter methods or by direct field access. But that’s
okay, because we have given Errai a way to set them using the annotated constructor parameters.

5.1.1.3. Example: An Immutable Entity with a Factory Method
Another good practice is to use a factory pattern to enforce invariance. Once again, let's modify

our example.

@ort abl e

67

Chapter 5. Marshalling

public class Person {
private final String nane;
private final int age;

private Person(String nane, int age) {
thi s. name = nane;
thi s. age = age;

public static Person createPerson(@hpsTo("nane") String name, @mhpsTo("age")
return new Person(nanme, age);

public String getName() {
return name;

public int getAge() {
return age;

Here we have made our only declared constructor private, and created a static factory method.
Notice that we've simply used the same @mapsTo annotation in the same way we did on the
constructor from our previous example. The marshaller will see this method and know that it should
use it to construct the object.

5.1.1.4. Example: An Immutable Entity with a Builder

For types with a large number of optional attributes, a builder is often the best approach.

@ort abl e

public class Person {
private final String namne;
private final int age;

private Person(@apsTo("nane") String name, @MbpsTo("age") int age) {
thi s. nanme = nane;
this.age = age;

public String getName() {
return name;

public int getAge() {
return age;

68

int age) {

Manual Mapping

@onPor t abl e

public static class Builder {
private String name;
private int age;

public Builder nane(String name) {
t hi s. name = nane;
return this;

public Builder age(int age) {
thi s. age = age;
return this;

public Person build() {
return new Person(nanme, age);

In this example, we have a nested Bui | der class that implements the Builder Pattern and calls
the private Per son constructor. Hand-written code will always use the builder to create Per son
instances, but the @apsTo annotations on the private Per son constructor tell Errai Marshalling to
bypass the builder and construct instances of Person directly.

One final note: as a nested type of Per son (which is marked @por t abl €), the builder itself would
normally be portable. However, we do not intend to move instances of Per son. Bui | der across
the network, so we mark Per son. Bui | der as @onPor t abl e.

5.1.2. Manual Mapping

Some classes may be out of your control, making it impossible to annotate them for auto-discovery
by the marshalling framework. For cases such as this, there are two approaches to include these
classes in your application.

The first approach is the easiest, but is contingent on whether or not the class is directly exposed
to the GWT compiler. That means, the classes must be part of a GWT module and within the
GWT client packages. See the GWT documentation on Client-Side Code [http://code.google.com/
webtoolkit/doc/latest/DevGuideCodingBasicsClient.html] for information on this.

5.1.2.1. Mapping Existing Client Classes

If you have client-exposed classes that cannot be annotated with the @or t abl e annotation, you
may manually map these classes so that the marshaller framework will comprehend and produce
marshallers for them and their nested types.

69

http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsClient.html

Chapter 5. Marshalling

To do this, specify them in ErraiApp.properties, using the
errai . marshal | i ng. seri al i zabl eTypes attribute with a whitespace separated list of classes
to make portable.

Example 5.1. Example ErraiApp.properties defining portable classes.

errai . marshal | i ng. seri ali zabl eTypes=org. foo.client.UserEntity \
org.foo.client. GoupEntity \
org. abci nc. nodel .client.Profile

If any of the serializable types have nested classes that you wish to make non-portable, you can
specify them like this:

Example 5.2. Example ErraiApp.properties defining nonportable classes.

errai . marshal | i ng. nonseri al i zabl eTypes=org. foo. client. UserEntity$Builder \
org. foo.client. G oupEntity$Buil der

5.1.2.2. Aliased Mappings of Existing Interface Contracts

The marshalling framework supports and promotes the concept of marshalling by interface
contract, where possible. For instance, the framework ships with a marshaller which can marshall
datato and fromthe j ava. util. Li st interface. Instead of having custom marshallers for classes
such as ArraylLi st and Li nkedLi st, by default, these implementations are merely aliased to the
java.util.List marshaller.

There are two distinct ways to go about doing this. The most straightforward is to specify which
marshaller to alias when declaring your class is @ort abl e .

package org.foo.client;

@ortable(aliasO = java.util.List.class)
public M/Listlnpl extends ArrayList {
I

In the case of this example, the marshaller will not attempt to comprehend your class. Instead,
it will merely rely on the j ava. uti |l . Li st marshaller to dematerialize and serialize instances of
this type onto the wire.

If for some reason it is not feasible to annotate the class, directly, you may specify the mapping
in the ErraiApp.properties file using the errai . mar shal | i ng. mappi ngAl i ases attribute.

70

Manual Class Mapping

errai . marshal | i ng. mappi ngAl i ases=org. foo.client. M/Listlnpl->ava.util.List \
org. foo. client. MyMapl npl ->j ava. util . Map

The list of classes is whitespace-separated so that it may be split across lines.

The example above shows the equivalent mapping for the MyLi st | npl class from the previous
example, as well as a mapping of a class to the j ava. uti | . Map marshaller.

The syntax of the mapping is as follows: <cl ass_t o_map>#[code]<contract _t o_map_t 0>.

Aliases do not inherit fields!

When you alias a class to another marshalling contract, extended fields of the
aliased class will not be available upon deserialization. For this you must provide
custom marshallers for those classes.

5.1.3. Manual Class Mapping

Although the default marshalling strategies in Errai Marshalling will suit the vast majority of use
cases, there may be situations where it is necessary to manually map your classes into the
marshalling framework to teach it how to construct and deconstruct your objects.

This is accomplished by specifying Mappi ngDefi ni ti on classes which inform the framework
exactly how to read and write state in the process of constructing and deconstructing objects.

5.1.3.1. MappingDefinition

All manual mappings should extend the
org.jboss.errai.marshal | ing.rebind. api . nodel . Mappi ngDefi ni ti on class. This is base
metadata class which contains data on exactly how the marshaller can deconstruct and construct
objects.

Consider the following class:

public class MySuperCustonEntity {
private final String nySuper Nane;
private String mySuperN cknane;

publ i c MySuper CustonEntity(String nySuperNanme) {

t hi s. mySuper Name = nySuper Nane; ;

public String get MySuper Narme() ({
return this.nySuperNang;

71

Chapter 5. Marshalling

public void set MySuper Ni ckname(String nySuper N cknane) {
thi s. mySuper Ni cknane = nySuper Ni cknane;

public String get MySuper Ni cknanme() {
return this. mySuperN cknamne;

Let us construct this object like so:

MySuper Cust onEnt ity entity = new MySuper CustonEntity("Coolio");
entity. set Super Ni ckname("coo");

Itis clear that we may rely on this object’s two getter methods to extract the totality of its state. But
due to the fact that the nmySuper Nane field is final, the only way to properly construct this object is
to call its only public constructor and pass in the desired value of nmySuper Nane .

Let us consider how we could go about telling the marshalling framewaork to pull this off:

@Cust omVappi ng
publ i ¢ MySuper Cust onEnt i t yMappi ng ext ends Mappi ngDefinition {
publ i ¢ MySuper Cust onEntit yMappi ng() ({
super (MySuper Cust onEnti ty. cl ass); /1

(1)

Si npl eConst ruct or Mappi ng cnsMappi ng = new Si npl eConst ruct or Mappi ng() ;
cnsMappi ng. mapPar nifol ndex (" nySuper Nane", 0, String. cl ass); /1

(2)
set |l nstanti ati onMappi ng(cnsMappi ng) ;

addMenber Mappi ng(new i t eMappi ng(" mySuper Ni cknane"Stri ng. cl ass,set MySuper Ni cknange"))/;/
(3)

addMenber Mappi ng(newReadMappi ng(" mySuper Nane", Stri ng. cl ass, "get MySuper Nane")) J/

(4)
addMenber Mappi ng(neReadMappi ng(" mySuper Ni cknane" Stri ng. cl ass) get MySuper Ni cknane")) /

(5)
}

And that's it. This describes to the marshalling framework how it should go about constructing and
deconstructing MySuper Cust onEntity.

72

Custom Marshallers

Paying attention to our annotating comments, let's describe what we've done here.

1. Call the constructor in Mappi ngDef i ni t i on passing our reference to the class we are mapping.

2. Using the Si npl eConst r uct or Mappi ng class, we have indicated that a custom constructor
will be needed to instantiate this class. We have called the mapPar niTol ndex method with
three parameters. The first, " mySuper nane" describes the class field that we are targeting. The
second parameter, the integer 0 indicates the parameter index of the constructor arguments
that we’ll be providing the value for the aforementioned field in this case the first and only, and
the final parameter St ri ng. cl ass tells the marshalling framework which marshalling contract
to use in order to de-marshall the value.

3. Using the Wi t eMappi ng class, we have indicated to the marshaller framework how to write the
"nySuper Ni cknanme" field, using the Stri ng. cl ass marshaller, and using the setter method
set MySuper Ni cknane .

4. Using the ReadMappi ng class, we have indicated to the marshaller framework how to read
the "nySuper Nare" field, using the String. cl ass marshaller, and using the getter method
get MySuper Nane .

5. Using the ReadMappi ng class, we have indicated to the marshaller framework how to read the
"mySuper Ni cknanme" field, using the Stri ng. cl ass marshaller, and using the getter method
get MySuper Ni cknane .

5.1.4. Custom Marshallers

There is another approach to extending the marshalling functionality that doesn’t involve mapping
rules, and that is to implement your own Mar shal | er class. This gives you complete control over
the parsing and emission of the JSON structure.

The implementation of marshallers is made relatively straight forward by the fact that both the
server and the client share the same JSON parsing API.

Consider the included java.util.Date marshaller that comes built-in to the marshalling
framework:

Example 5.3. DataMarshaller.java from the built-in marshallers

@ i ent Marshal | er (Dat e. cl ass)
@ser ver Mar shal | er (Dat e. cl ass)
public class DateMarshall er extends AbstractNul | abl eMar shal | er <Dat e> {
@erride
public Date[] getEnptyArray() {
return new Date[O0];

@verride

73

Chapter 5. Marshalling

publ i c Dat e doNot Nul | Demar shal | (fi nal EJVal ue o, final MarshallingSession ctx) {
if (o.isOject() '= null) {
EJVal ue qualifiedValue = o.isObject().get(SerializationParts. QJALI FI ED_VALUE);
if ('qualifiedValue.isNull() && qualifiedValue.isString() !'= null) {
return new Dat e(Long. parseLong(qual i fiedVal ue.isString().stringValue()));

}
EJVal ue nunericValue = o.isObject().get(SerializationParts. NUMERI C_VALUE) ;
if (!nunmericValue.isNull() && nunericValue.isNunmber() !'= null) {
return new Dat e(new Doubl e(nuneri cVal ue. i sNunber (). doubl eVal ue()) .| ongVal ue());
}
if (!nunericValue.isNull() && nunericValue.isString() !'= null) {
return new Dat e(Long. par seLong(numericVal ue.isString().stringValue()));
}
}
return null;
}
@erride
public String doNotNul | Marshal |l (final Date o, final MrshallingSession ctx) ({
return AR + Seri al i zati onParts. ENCODED_TYPE + "\
\"" + Date.class.getNane() + "\"," +
"\"" + SerializationParts. OBJECT_ID + "\":\"" + 0. hashCode() + "\"," +
"\"" 4+ SerializationParts. QUALI FI ED VALUE + "\"

\"" + o.getTime() + "\"}"

The class is annotated with both @ i ent Marshal | er and @er ver Mar shal | er indicating that
this class should be used for both marshalling on the client and on the server.

The doNot Nul | Demar shal | () method is responsible for converting the given JSON object (which
has already been parsed and verified non-null) into a Java object.

The doNot Nul | Mar shal | () method does roughly the inverse: it converts the given Java object
into a String (which must be parseable as a JSON object) for transmission on the wire.

74

Chapter 6.

Remote Procedure Calls (RPC)

ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy
on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it
to be a more useful and concise approach for exposing services to the clients.

Please note that this APl has changed since version 1.0. RPC services provide a way of creating
type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support
client-to-server calls, and not vice-versa.

ﬁ Plugin Tip

Using the Errai Forge Addon Add Errai Features command, Errai RPC can be used
if Errai Messaging or Errai CDI have been installed.

Manual Setup Section

6.1. Creating an RPC Interface

Creating a service is straight forward. It requires the definition of a remote interface, and a service
class which implements it. See the following:

@Renvot e
public interface MyRenoteService {
publ i c bool ean i sEveryoneHappy();

The @renot e annotation tells Errai that we'd like to use this interface as a remote interface. The
remote interface must be part of of the GWT client code. It cannot be part of the server-side code,
since the interface will need to be referenced from both the client and server side code. That said,
the implementation of a service is relatively simple to the point:

@er vi ce
public class MyRenoteServicel npl inplenents M/RenoteService {

publi ¢ bool ean i sEveryoneHappy() {
/'l blatently lie and say everyone's happy.
return true;

75

Chapter 6. Remote Procedure C...

That's all there is to it. You use the same @5er vi ce annotation as described in Section 2.4. The
presence of the remote interface tips Errai off as to what you want to do with the class.

Warning

Beginning with Errai 2.0.CR1, the default for automatic service discovery has
changed in favour of CDI based applications, meaning RPC service discovery must
be explicitly turned on in case Errai CDI is not used (the wel d-i nt egrati on. j ar
is not on the classpath). This can be done using an init-param in the servlet config
of your web.xml:

<servl| et >
<servl et - name>Err ai Servl et </ servl et - nane>
<servlet-class>org.]jboss. errai.bus. server.servl et. Defaul t Bl ocki ngServl et </
servl et-cl ass>
<i nit-paranp
<par am nane>aut o- di scover - servi ces</ par am nane>
<par am val ue>t rue</ par am val ue>
</init-paranp
<| oad- on-st art up>1</ | oad- on- st art up>
</servlet>

6.2. Making calls

Calling a remote service involves use of the MessageBui | der API. Since all messages are
asynchronous, the actual code for calling the remote service involves the use of a callback, which
we use to receive the response from the remote method. Let's see how it works:

MessageBui | der. creat eCal | (new Renot eCal | back<Bool ean>() {
public void call back(Bool ean i sHappy) {
if (isHappy) Wndow. al ert("Everyone is happy!");

}
}., MyRenot eServi ce. cl ass) . i sEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correspond to the
return value of the method on the server. We also reference the remote interface we are calling,
and directly call the method. However, don't be tempted to write code like this :

76

Proxy Injection

bool ean bool = MessageBuil der.createCall (..., M/RenpteService. cl ass).i sEveryoneHappy();

The above code will never return a valid result. In fact, it will always return null, false, or 0
depending on the type. This is due to the fact that the method is dispatched asynchronously, as
in, it does not wait for a server response before returning control. The reason we chose to do this,
as opposed to emulate the native GWT-approach, which requires the implementation of remote
and async interfaces, was purely a function of a tradeoff for simplicity.

6.2.1. Proxy Injection

An alternative to using the MessageBui | der APl is to have a proxy of the service injected.

@ nj ect
private Call er<M/Renot eServi ce> renoteService;

For calling the remote service, the callback objects need to be provided to the cal I method before
the corresponding interface method is invoked.

renot eServi ce. cal | (cal | back) . i sEveryoneHappy();

The Errai IOC GWT module needs to be inherited to make use of caller injection. To do this, the
following line needs to be added to the application’s *. gwt . xnm file. It is important that this line
comes af t er the Errai Bus module:

<inherits nane="org.jboss.errai.ioc. Container"/>

6.3. Handling exceptions

Handling remote exceptions can be done by providing an Err or Cal | back on the client:

MessageBui | der. createCal | (
new Renot eCal | back<Bool ean>() {
public void call back(Bool ean i sHappy) {
if (isHappy) Wndow. al ert("Everyone is happy!");
}
)i
new ErrorCal | back() {
publi c bool ean error(Message message, Throwabl e caught) {

try {
t hrow caught;

77

Chapter 6. Remote Procedure C...

}
catch (Nobodyl sHappyException e) {

W ndow. al ert ("OK, that's sad!");

}
catch (Throwable t) {

GWT. | og(" An unexpected error has occurred", t);

}

return fal se;

}
Je
My/Renot eSer vi ce. cl ass) . i sEver yoneHappy() ;

As remote exceptions need to be serialized to be sent to the client, the @ort abl e annotation
needs to be present on the corresponding exception class (see Marshalling). Further the exception
class needs to be part of the client-side code. For more details on Er r or Cal | backs see Handling
Errors.

6.3.1. Global RPC exception handler

In a scenario where many different remote calls potentially throw the same exception types (e.g.
exceptions related to authentication or authorization) it can be easier to register a global exception
handler instead of providing error callbacks at each RPC invocation. This global exception handler
is called in case an exception occurs in the process of a remote call that has no error callback
associated with it. So, it will handle an otherwise uncaught exception.

@Jncaught Excepti on
private void onUncaught Excepti on(Throwabl e caught) {

try {
t hrow caught;

}
catch (User Not Loggedl nException e) {

/1 navigate to | ogin dial og

}
catch (Throwable t) {

GWT. | og(" An unexpected error has occurred", t);

6.4. Client-side Interceptors

Client-side remote call interceptors provide the ability to manipulate or bypass the remote call
before it's being sent. This is useful for implementing crosscutting concerns like caching, for
example when the remote call should be avoided if the data is already cached locally.

78

Annotating the Remote Interface

6.4.1. Annotating the Remote Interface

To have a remote call intercepted, either an interface method or the remote interface type has
to be annotated with @ nt er cept edCal | . If the type is annotated, all interface methods will be
intercepted.

@Renot e
public interface CustonerService {

@ nterceptedCal | (MyCachel nterceptor. cl ass)
public Customer retrieveCustomerByld(long id);

Note that an ordered list of interceptors can be used for specifying an interceptor chain e.qg.

@nterceptedCal | ({ MyCachel nterceptor.class, MySecuritylnterceptor.class})
public Customer retrieveCustomerByld(long id);

6.4.2. Implementing an Interceptor

Implementing an interceptor is easy:

public class MyCachelnterceptor inplenents Rpclnterceptor {

@verride
public void aroundl nvoke(final RenoteCall Context context) {

/'l e.g check if the result is cached and carry out the actual call only
in case it's not.

context.proceed() // executes the next interceptor in the chain or the
actual renote call.

/] context.setResult() // sets the result directly w thout carrying out
the remote call.

}

The Renpt eCal | Cont ext passed to the ar oundl nvoke method provides access to the intercepted
method’s name and read/write access to the parameter values provided at the call site.

Calling proceed executes the next interceptor in the chain or the actual remote call if all
interceptors have already been executed. If access to the result of the (asynchronous) remote
call is needed in the interceptor, one of the overloaded versions of proceed accepting a
Renot eCal | back has to be used instead.

79

Chapter 6. Remote Procedure C...

The result of the remote call can be manipulated by calling Renot eCal | Cont ext . set Resul t ().

Not calling proceed in the interceptor bypasses the actual remote call, passing
Rest Cal | Cont ext . get Resul t () to the Renot eCal | Back provided at the call site.

6.4.3. Annotating the Interceptor (alternative)

If you cannot (or do not wish to) annotate the remote interface you may instead define remote
call interceptors by annotating the interceptor class itself with @ nt er cept sRenot eCal | . This
annotation requires the developer to specify the remote interface that should be intercepted. The
interceptor will then be applied to all methods in that interface. If the interface method is annotated
with | nt er cept edCal | , that annotation will win out.

@nterceptsRenpteCal | ({ MyRenot el nterface. class, M/Q herRenotel nterface.class })
public class CustonRpclnterceptor inplenents Rpclnterceptor {

@verride
public void aroundl nvoke(final RenoteCall Context context) {
/1 interceptor |ogic goes here

This approach sacrifices granularity (you cannot intercept individual methods on the remote
interface). However, it does allow method interception without modification to the remote interface
(which is particularly useful when the developer is not in control of the remote interface).

6.4.4. Interceptors and 10C

It is worth noting that interceptors may be defined as managed beans using the @ependent,
@5i ngl et on, or @ppl icationScoped annotations. If the Errai application is using IOC (i.e.
imports the IOC Errai module) and the interceptor is annotated as a managed bean, then the I0C
container will be used to get/create the interceptor instance. This allows developers to @ nj ect
dependencies into interceptors. If IOC is not being used, or else the interceptor is not properly
annotated, then the interceptor class will simply be instantiated via new.

6.5. Session and request objects in RPC endpoints

Before invoking an endpoint method Errai sets up an RpcCont ext that provides access to message
resources that are otherwise not visible to RPC endpoints.

@er vi ce
public class MyRenoteServicel npl inplenments M/RenoteService {

publ i c bool ean i sEveryoneHappy() {
Ht t pSessi on session = RpcContext. getHttpSession();

80

Batching remote calls

Servl et Request request = RpcCont ext. get Servl et Request () ;

return true;

6.6. Batching remote calls

Some use cases require multiple interactions with the server to complete. Errai’'s RPC mechanism
allows for batched invocations of remote methods that will be executed using a single server
round-trip. This is useful for reducing the number of simultaneous HTTP connections and at the
same time allows for reusing and combining fine-grained remote services.

Injecting a BatchCaller instead of a Caller<T> is all it takes to make use of batched remote
procedure calls.

@nt r yPoi nt
public class MyBean {

@ nj ect
private BatchCaller batchCaller;

private void someMet hod() {
I/
batchCal l er.cal |l (renot eCal | backl, RenoteServicel.class). nethodl();
batchCal | er. cal | (renot eCal | back2, RenoteService2.cl ass). nethod2();

/'l I nvokes the accumul ated renote requests using a single server round-trip.
bat chCal | er. sendBat ch() ;

The remote methods will get executed only after sendBat ch() was called. The method sendBat ch
accepts an additional Renot eCal | back instance as a parameter which will we invoked when all
remote calls have completed in success. Consequently, an Err or Cal | back can also be provided
which will get executed for all remote calls that have completed in failure.

6.7. Asynchronous handling of RPCs on the server

If computing the result of an RPC call takes a significant amount of time (i.e. because a third
party service needs to be contacted or a long running query needs to be executed) it might be
preferable to release the request-processing thread so it can perform other work and provide the
result in a different execution context farther in the future. So, the RPC endpoint method can return
immediately and the thread handling the incoming request doesn’t need to stay active until the

81

Chapter 6. Remote Procedure C...

result is available. Computing and setting the result can be done in a different thread (i.e. from a
smaller thread pool provided by a library).

Errai provides a special return type Cal | abl eFut ur e to indicate to the RPC system that the result
of the remote method call will be provided asynchronously (after the remote method call has
returned).

Here’s an example returning a result of type String:

@Renot e
public interface LongRunni ngService {
public Callabl eFuture<String> someLongRunni ngTask();

@ber vi ce
public class LongRunni ngServicel npl inmplenments LongRunni ngService {
@verride
public Call abl eFuture<Stri ng> soneLongRunni ngTask() {
final Callabl eFuture<String> future = Call abl eFut ureFactory. get().createFuture(String.cl ass

final ExecutorService executorService = Executors. newSi ngl eThr eadExecut or () ;
execut or Servi ce. subnmi t (new Runnabl e() {
@verride
public void run() {
try {
Thr ead. sl eep(5000) ;
future. setValue("result");

}
catch (Throwable t) {

t.printStackTrace();

}
1
execut or Servi ce. shut down() ;
return future;

Note that the client-side code does not change when using this feature and will work exactly as
described in Section 6.2, “Making calls” i.e.:

MessageBui | der. createCal | (new Renot eCal | back<Stri ng>() {
@verride
public void callback(String response) {
assert Equal s("foobar", response);

82

Asynchronous handling of RPCs on the server

finishTest();
}

}, LongRunni ngServi ce. cl ass) . someLongRunni ngTask() ;

83

84

Chapter 7.

Erral JAX-RS

JAX-RS (Java API for RESTful Web Services) is a Java EE standard (JSR-311) for implementing
REST-based Web services in Java. Errai JAX-RS brings this standard to the browser and
simplifies the integration of REST-based services in GWT client applications. Errai can generate
proxies based on JAX-RS interfaces which will handle all the underlying communication and
serialization logic. All that's left to do is to invoke a Java method.

Errai's JAX-RS support consists of the following:

» A client-side API to communicate with JAX-RS endpoints

« A code generator that runs at your project’s build time, providing proxy implementations for each
JAX-RS resource interfaces visible within the GWT module

 Errai loC and CDI providers that allow you to @ nj ect instances of {{Caller<T>} (the same API
used in Errai RPC)}

« Integration with either Errai Marshalling or Jackson to translate request and response data
between Java object and a string-based wire format

Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai JAXRS
to follow along with this section.

Manual Setup Section
Errai tutorial project
demo collection

7.1. Server-Side JAX-RS Implementation

Errai's JAX-RS support consists mostly of features that make the client side easier and more
reliable to maintain. You will need to use an existing third-party JAX-RS implementation on the
server side. All Java EE 6 application servers include such a module out-of-the-box. If you are
developing an application that you intend to deploy on a plain servlet container, you will have
to choose a JAX-RS implementation (for example, RestEasy) and configure it properly in your
web.xml.

Alternatively, you could keep your REST resource layer in a completely separate web application
hosted on the same server (perhaps build an Errai JAX-RS client against an existing REST service

85

https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai-tutorial/archive/master.zip
https://github.com/errai/errai/tree/master/errai-demos
https://github.com/errai/errai/tree/master/errai-demos
https://github.com/errai/errai/tree/master/errai-demos

Chapter 7. Errai JAX-RS

you developed previously). In this case, you could factor out the shared JAX-RS interface into a
shared library, leaving the implementation in the non-Errai application.

Finally, you can take advantage of the cross-origin resource sharing (CoRS) feature in modern
browsers and use Errai JAX-RS to send requests to a third-party server. The third-party server
would have to be configured to allow cross-domain requests. In this case, you would write a
JAX-RS-Annotated interface describing the remote REST resources, but you would not create an
implementation of that interface.

7.2. Shared JAX-RS Interface

Errai JAX-RS works by leveraging standard Java interfaces that bear JAX-RS annotations. You
will also want these interfaces visible to server-side code so that your JAX-RS resource classes
can implement them (and inherit the annotations). This keeps the whole setup typesafe, and
reduces duplication to the bare minimum. The natural solution, then is to put the JAX-RS interfaces
under the client.shared package within your GWT module:

e project
» src/main/java

e com.mycompany.myapp
* MyApp.gwt.xml [the app’s GWT module]

e com.mycompany.myapp.client.local
* MyAppClientStuff.java [code that @Injects Caller<MyAppRestResource>]

e com.mycompany.myapp.client.shared
« CustomerService.java [the JAX-RS interface]

* com.mycompany.myapp.server
« CustomerServicelmpl.java [the server-side JAX-RS resource implementation]

The contents of the server-side files would be as follows:

Example 7.1. CustomerService.java

@rat h("cust oners")
public interface CustomerService {
@ET
@°r oduces("application/json")
public List<Custoner> |listAllCustomers();

@0osT
@consunes("application/json")

86

Creating Requests

@r oduces("text/plain")
public | ong createCustomer(Custonmer custoner);

The above interface is visible both to server-side code and to client-side code. It is used by client-
side code to describe the available operations, their parameter types, and their return types. If
you use your IDE’s refactoring tools to modify this interface, both the server-side and client-side
code will be updated automatically.

Example 7.2. CustomerServicelmpl.java

public class CustonerServicel nmpl inplenments CustonerService {

@verride

public List<Custonmer> listAllCustoners() {
/1 Use a database APl to | ook up all custoners in back-end data store
/! Return the resulting Iist

@verride
public I ong createCustomner(Custoner custoner) ({
/'l Store new Custoner instance in back-end data store

The above class implements the shared interface. Since it performs database and/or filesystem
operations to manipulate the persistent data store, it is not GWT translatable, and it's therefore
kept in a package that is not part of the GWT module.

Save typing and reduce duplication

Note that all JAX-RS annotations (@at h, @¥ET, @onsunes, and so on) can be
inherited from the interface. You do not need to repeat these annotations in your
resource implementation classes.

7.3. Creating Requests

This section assumes you have already set up the CustomerService JAX-RS endpoint as
described in the previous section.

To create a request on the client, all that needs to be done is to invoke Rest d i ent. create(),
thereby providing the JAX-RS interface, a response callback and to invoke the corresponding
interface method:

87

Chapter 7. Errai JAX-RS

Example 7.3. App.java

Button create = new Button("Create", new CickHandler() {
public void ondick(dickEvent clickEvent) ({
Cust oner custoner = new Custoner (firstNanme, |astNane, postal Code);
Rest Cli ent. creat e(Cust omer Servi ce. cl ass, cal |l back). creat eCust omer (cust oner);

}
1),

For details on the callback mechanism see Handling Responses.

7.3.1. Proxy Injection

Injectable proxies can be used as an alternative to calling Rest Cl i ent . create().

@ nj ect
private Call er<Custoner Servi ce> cust oner Servi ce;

To create a request, the callback objects need to be provided to the cal I method before the
corresponding interface method is invoked.

cust oner Servi ce. cal | (cal | back).listAll Customers();

To use caller injection, your application needs to inherit the Errai IOC GWT module. To do this,
just add this line to your application’s *. gwt . xmi file and make sure it comes af t er the Errai JAX-
RS module (see Getting Started):

<inherits nane="org.jboss.errai.ioc. Container"/>

@ Note

The JAX-RS interfaces need to be visible to the GWT compiler and must therefore
reside within the client packages (e.g. client.shared).

88

Handling Responses

7.4. Handling Responses

An instance of Errai’'s Renot eCal | back<T> has to be passed to the Rest T i ent. create() call,
which will provide access to the JAX-RS resource method’s result. T is the return type of the JAX-
RS resource method. In the example below it's just a Long representing a customer ID, but it can
be any serializable type (see Marshalling).

Renot eCal | back<Long> cal | back = new Renot eCal | back<Long>() {
public void callback(Long id) {
W ndow. al ert ("Custoner created with ID: " + id);

A special case of this Renot eCal | back is the ResponseCal | back which can be used as an
alternative. It provides access to the Response object representing the underlying HTTP response.
This is useful when more details of the HTTP response are needed, such as headers and the
status code. The ResponseCal | back can also be used for JAX-RS interface methods that return
ajavax.ws.rs. core. Response type. In this case, the Mar shal | i ngW apper class can be used
to manually demarshall the response body to an entity of the desired type.

ResponseCal | back cal | back = new ResponseCal | back() {
public void cal |l back(Response response) {
W ndow. al ert ("HTTP status code: " + response. get StatusCode());
W ndow. al ert ("HTTP response body: " + response.getText());

7.4.1. Handling Errors

For handling errors, Errai's error callback mechanism can be reused and an instance of
Error Cal | back can optionally be passed to the Rest Cl i ent. creat e() call. In case of an HTTP
error, the ResponseExcept i on provides access to the Response object. All other Thr owabl es
indicate a communication problem.

ErrorCal | back errorCall back = new RestErrorCall back() {
public bool ean error(Request request, Throwable throwable) {

try {
t hrow t hr onabl e;

}

catch (ResponseException e) {
Response response = e. get Response();
/| process unexpected response
response. get St at usCode() ;

89

Chapter 7. Errai JAX-RS

}
catch (Throwable t) {

/| process unexpected error (e.g. a network problem

}

return false;

To provide more customized error handling, Errai also defines client side exception handling
via the d i ent Excepti onMapper interface. The client exception mapper allows developers
to process a REST Response into a Throwabl e prior to the error being delivered to the
Error Cal | back described above. The exception mapper class must be annotated with
javax.ws.rs. ext. Provi der as well as implement the d i ent Except i onMapper interface.

@°r ovi der
public class My/AppExcepti onMapper inplenents Cient Excepti onMapper {

/**
* @ee org.jboss.errai.enterprise.client.jaxrs.CientExceptionMapper#fronmResponse(com googl ¢
*/
@verride
publi c Throwabl e fronResponse(Response response) {
if (response. get StatusCode() == 404)
return new MyAppNot FoundException();
el se
return new MyAppServer Error(response. get StatusText());

Must be used in conjunction with Rest Error Cal I back

It is important to note that the C i ent Except i onMapper will only be invoked when
the callback passed to the Cal | er is an instance of Rest Err or Cal | back.

The C i ent Excepti onMapper will, by default, be invoked for every error response. However,
Errai also provides the org.jboss.errai.enterprise.shared. api . annot ati ons. MapsFrom
annotation which provides for additional granularity. An exception mapper can be annotated so
that it is only invoked for methods on specific REST interfaces.

@°r ovi der
@mpsFron({ SoneRestlnterface.class })
public class SpecificCientExcepti onMapper inplenents Cient Excepti onMapper {

90

Client-side Interceptors

/**
* org.jboss.errai.enterprise.client.jaxrs.CientExcepti onMapper #fromResponse(com googl
*/

@verride

publi ¢ Throwabl e fronResponse(Response response) {
/1 Do something specific here

7.5. Client-side Interceptors

Client-side remote call interceptors provide the ability to manipulate or bypass the request before
it's being sent. This is useful for implementing crosscutting concerns like caching or security
features e.g:

« avoiding the request when the data is cached locally

 adding special HTTP headers or parameters to the request

7.5.1. Annotating the JAX-RS Interface

To have a JAX-RS remote call intercepted, either an interface method or the JAX-RS
implementation class method has to be annotated with @nterceptedCall. If the type is
annotated, all interface methods will be intercepted.

@Pat h("cust oners")
public interface CustomerService {

@EET

@ath("/{id}")

@°r oduces("application/json")

@ nt ercept edCal | (MyCachel nt erceptor. cl ass)

public Customer retrieveCustomnerByl d(@athParan("id") |ong id);

Note that an ordered list of interceptors can be used for specifying an interceptor chain e.g.

@nterceptedCal | ({ M/Cachel nterceptor.class, MySecuritylnterceptor.class})
public Custoner retrieveCustonerByld(@athParan("id") |ong id);

91

Chapter 7. Errai JAX-RS

7.5.2. Implementing an Interceptor

Implementing an interceptor is easy:

public class MyCachelnterceptor inmplenments RestClientlnterceptor {

@verride

public void aroundl nvoke(final RestCall Context context) {
Request Bui | der buil der = cont ext. get Request Bui |l der ();
bui | der. set Header (" header Nane", "val ue");
cont ext. proceed();

The Rest Cal | Cont ext passed to the ar oundl nvoke method provides access to the context of the
intercepted JAX-RS (REST) remote call. It allows to read and write the parameter values provided
at the call site and provides read/write access to the Request Bui | der instance which has the
URL, HTTP headers and parameters set.

Calling proceed executes the next interceptor in the chain or the actual remote call if all
interceptors have already been executed. If access to the result of the (asynchronous) remote
call is needed in the interceptor, one of the overloaded versions of proceed accepting a
Renot eCal | back has to be used instead.

The result of the remote call can be manipulated by calling Rest Cal | Cont ext . set Resul t ().

Not calling proceed in the interceptor bypasses the actual remote call, passing
Rest Cal | Cont ext . get Resul t () to the Renot eCal | Back provided at the call site.

7.5.3. Annotating the Interceptor (alternative)

If you cannot (or do not wish to) annotate the JAX-RS interface you may instead define remote
call interceptors by annotating the interceptor class itself with @ nt er cept sRenmot eCal | . This
annotation requires the developer to specify the JAX-RS interface that should be intercepted. The
interceptor will then be applied to all methods in that interface. If the interface method is annotated
with | nt er cept edCal | , that annotation will win out.

@nterceptsRenpteCal | ({ MyJaxrsinterface.class, M/QtherJaxrslinterface.class })
public class MyCachelnterceptor inplenments RestClientlnterceptor {

@verride

public void aroundl nvoke(final RestCall Context context) {
/1 Do interceptor |ogic here
cont ext . proceed();

92

Interceptors and IOC

This approach sacrifices granularity (you cannot intercept individual methods on the JAX-RS
interface). However, it does allow method interception without modification to the JAX-RS interface
(which is particularly useful when the developer is not in control of the JAX-RS interface).

7.5.4. Interceptors and 10C

It is worth noting that interceptors may be defined as managed beans using the @ependent,
@5i ngl eton, or @pplicationScoped annotations. If the Errai application is using 10C (i.e.
imports the IOC Errai module) and the interceptor is annotated as a managed bean, then the IOC
container will be used to get/create the interceptor instance. This allows developers to @ nj ect
dependencies into interceptors. If IOC is not being used, or else the interceptor is not properly
annotated, then the interceptor class will simply be instantiated via new.

7.6. Wire Format

Errai's JSON format will be used to serialize/deserialize your custom types. See Marshalling for
details.

Alternatively, a Jackson compatible JSON format can be used on the wire. See Configuration for
details on how to enable Jackson marshalling.

7.7. Path

All paths specified using the @at h annotation on JAX-RS interfaces are by definition relative
paths. Therefore, by default, it is assumed that the JAX-RS endpoints can be found at the specified
paths relative to the GWT client application’s context path.

7 a Configuring the Path

To learn more about configuring the path, checkout the JAX-RS Configuration
Section.

93

94

Chapter 8.

Erral JPA

Starting with Errai 2.1, Errai implements a subset of JPA 2.0. With Errai JPA, you can store and
retrieve entity objects on the client side, in the browser’s local storage. This allows the reuse of
JPA-related code (both entity class definitions and procedural logic that uses the EntityManager)
between client and server.

Errai JPA implements the following subset of JPA 2.0:

« Annotation-based configuration

« Entity Types with

« lIdentifiers of any numeric type (int, long, short, etc.)
» Generated identifiers

* Regular attributes of any JPA Basic type (Java primitive types, boxed primitives, enums,
Biglnteger, BigDecimal, String, Date, Time, and Timestamp)

 Singular and Plural (collection-valued) attributes of other entity types

 All association types (one-to-one, one-to-many, many-to-one, many-to-many)

 All association cascade rules (ALL, PERSIST, MERGE, REMOVE, REFRESH, DETACH)
 Circular and self references work properly

» Polymorphic queries and collections (queries for a base entity type can result in instances of
its subtypes)

» Property access by field or get/set methods

« Named, typed JPQL queries that select exactly one entity type
« With cascading fetch of related entities

* With or without WHERE clause

« All boolean, arithmetic, and string operators supported

« All String manipulation functions supported

» With or without ORDER BY clause

- Lifecycle events and entity lifecycle listeners

e Much of the Metamodel APl (Metanodel, EntityType, SingularAttribute,
Plural Attribute, etc.)

95

Chapter 8. Errai JPA

It's all client-side

Errai JPA is a declarative, typesafe interface to the web browser’s | ocal St or age

object. As such it is a client-side implementation of JPA. Objects are stored and
fetched from the browser’s local storage, not from the JPA provider on the server
side.

8.1. Getting Started

Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai JPA to
follow along with this section.

E] Manual Setup
Checkout the for instructions on how to manually add Errai

JPA to your project.

8.1.1. INF/persistence.xml

Errai ignores META-INF/persistence.xml for purposes of client-side JPA. Instead, Errai scans all
Java packages that are part of your GWT modules for classes annotated with @nt i t y. This allows
you the freedom of defining a persistence.xml that includes both shared entity classes that you
use on the client and the server, plus server-only entities that are defined in a server-only package.

8.1.2. Declaring an Entity Class

Classes whose instances can be stored and retrieved by JPA are called entities. To declare a
class as a JPA entity, annotate it with @ntity.

JPA requires that entity classes conform to a set of rules. These are:

» The class must have an ID attribute

» The class must have a public or protected constructor that takes no arguments
» The class must be public and nonfinal

* No methods or persistent fields of the class may be final

» The class must be a top-level type (not a nested or inner class)

Here is an example of a valid entity class with an ID attribute (i d) and a String-valued persistent
attribute (nane):

96

Declaring an Entity Class

@ntity
public class CGenre {

@d @ener at edVal ue
private int id;

private String name;

/1 This constructor is used by JPA
public Genre() {}

/1 This constructor is not used by JPA
public Genre(String name) {

this();

this. name = nane;

/| These getter and Setter methods are optional:

public int getld() { return id; }
public void setld(int id) { this.id =1id; }

public String getNane() { return nane; }
public void setNane(String name) { this.nane = nane; }

8.1.2.1. Entity Attributes

The state of fields and JavaBeans properties of entities are generally persisted with the entity
instance. These persistent things are called attributes .

JPA Attributes are subdivided into two main types: singular and plural . Singular attributes
are scalar types like Integer or String. Plural attributes are collection values, such as
Li st <l nt eger > 0or Set <Stri ng>.

The values of singular attributes (and the elements of plural attributes) can be of any application-
defined entity type or a JPA Basic type. The JPA basic types are all of the Java primitive
types, all boxed primitives, enums, Biginteger, BigDecimal, String, Date (j ava. util.Date or
j ava. sql . Dat e), Time, and Timestamp.

You can direct JPA to read and write your entity’s attributes by direct field access or via JavaBeans
property access methods (that is, "getters and setters"). Direct field access is the default. To
request property access, annotate the class with @ccess(AccessType. PROPERTY). If using
direct field access, attribute-specific JPA annotations should be on the fields themselves; when
using property access, the attribute-specific annotations should be on the getter method for that

property.

97

Chapter 8. Errai JPA

8.1.2.2. ID Attributes and Auto-Generated Identifiers

Each entity class must have exactly one ID attribute. The value of this attribute together with the
fully-qualified class name uniquely identifies an instance to the entity manager.

ID values can be assigned by the application, or they can be generated by the JPA entity
manager. To declare a generated identifier, annotate the field with @ener at edVval ue. To declare
an application-assigned identifier, leave off the @sener at edVal ue annotation.

Generated identifier fields must not be initialized or modified by application code. Application-
assigned identifier fields must be initialized to a unique value before the entity is persisted by the
entity manager, but must not be modified afterward.

8.1.2.3. Single-valued Attributes

By default, every field of a JPA basic type is a persistent attribute. If a basic type field should not
be presistent, mark it with t r ansi ent or annotate it with @r ansi ent .

Single-valued attributes of entity types must be annotated with @nheToOne or @anyToOne.

Single-valued types that are neither entity types nor JPA Basic types are not presently supported
by Errai JPA. Such attributes must be marked transient.

Here is an example of an entity with single-valued basic attributes and a single-valued relation
to another entity type:

@ntity

public class Al bum {
@cener at edVal ue
@d
private Long id;

private String nane;

@manyToOne
private Artist artist;

private Date rel easeDate;
private Format format;

public Long getld() { returnid; }
public void setld(Long id) { this.id =id; }

public String getName() { return nane; }
public void setNane(String name) { this.nane = nane; }

98

Declaring an Entity Class

public Artist getArtist() { return artist; }
public void setArtist(Artist artist) { this.artist = artist; }

public Date get Rel easeDate() { return rel easeDate; }
public voi d set Rel easeDat e(Dat e rel easeDate) { this.rel easeDate =rel easeDate; }

public Format getFormat() { return format; }
public void set Format (Format format) { this.format = format; }

8.1.2.4. Plural (collection-valued) Attributes

Collection-valued types Col | ecti on<T>, Set <T>, and Li st <T> are supported. JPA rules require
that all access to the collections are done through the collection interface method; never by specific
methods on an implementation.

The element type of a collection attribute can be a JPA basic type or an entity type. If it is an entity
type, the attribute must be annotated with @neToMany or @/anyToMany.

Here is an example of an entity with two plural attributes:

@ntity
public class Artist {

@d

private Long id;
private String name;

/1 a two-way relationship (albuns refer back to artists)
@neToMany(mappedBy="artist", cascade=CascadeType. ALL)
private Set <Al burm> al bums = new HashSet <Al buns() ;

/1l a one-way relationship (genres don't reference artists)
@neToMany(cascade={ CascadeType. PERSI ST, CascadeType. VERCGE})
private Set<Genre> genres = new HashSet <Genre>();

public Long getld() { returnid; }
public void setld(Long id) { this.id =id; }

public String getNane() { return nane; }
public void setNane(String name) { this.nane = nane; }

public Set <Al bun> get Al buns() { return al bunms; }
public void set Al buns(Set <Al bun®> al buns) { this.albums = al buns; }

public Set<Genre> getGenres() { return genres; }
public void setGenres(Set<Genre> genres) { this.genres = genres; }

99

Chapter 8. Errai JPA

8.1.3. Entity Lifecycle States

8.1.3.1. Cascade Rules

When an entity changes state (more on this later), that state change can be cascaded
automatically to related entity instances. By default, no state changes are cascaded to related
entities. To request cascading of entity state changes, use the cascade attribute on any of the
relationship quantifiers @neToOne, @/kanyToOne, @neToMany, and @anyToMany.

CascadeType value Description

PERSI ST Persist the related entity object(s) when this
entity is persisted

MERGE Merge the attributes of the related entity
object(s) when this entity is merged

REMOVE Remove the related entity object(s) from
persistent storage when this one is removed

REFRESH Not applicable in Errai JPA

DETACH Detach the related entity object(s) from the
entity manager when this object is detached

ALL Equivalent to specifying all of the above

For an example of specifying cascade rules, refer to the Art i st example above. In that example,
the cascade type on al buns is ALL. When a particular Arti st is persisted or removed, detached,
etc., all of that artist's albums will also be persisted or removed, or detached correspondingly.
However, the cascade rules for genr es are different: we only specify PERSI ST and MERGE. Because
a Genr e instance is reusable and potentially shared between many artists, we do not want to
remove or detach these when one artist that references them is removed or detached. However,
we still want the convenience of automatic cascading persistence in case we persist an Arti st
which references a new, unmanaged Genr e.

8.1.4. Obtaining an instance of EntityManager

The entity manager provides the means for storing, retrieving, removing, and otherwise affecting
the lifecycle state of entity instances.

To obtain an instance of EntityManager on the client side, use Errai 1oC (or CDI) to inject it into
any client-side bean:

@ent r yPoi nt
public class Min {
@nject EntityManager em

100

Obtaining an instance of EntityManager

8.1.4.1. Storing and Updating Entities

To store an entity object in persistent storage, pass that object to the Ent i t yManager . per si st ()
method. Once this is done, the entity instance transitions from the new state to the managed state.

If the entity references any related entities, these entities must be in the managed state already, or
have cascade-on-persist enabled. If neither of these criteria are met, an | | | egal St at eExcepti on
will be thrown.

See an example in the following section.

8.1.4.2. Fetching Entities by ID

If you know the unique ID of an entity object, you can use the Entit yManager. fi nd() method
to retrieve it from persistent storage. The object returned from the fi nd() method will be in the
managed state.

Example:

/1 make it

Al bum al bum = new Al bunm();

al bum set Artist(null);

al bum set Nanme(" Abbey Road");

al bum set Rel easeDat e(new Dat e(- 8366400000L)) ;

[l store it

EntityManager em = get EntityManager();
em persi st (al bum ;

em flush();

em det ach(al bum;

assert Not Nul | (al bum getld());

Il fetch it

Al bum f et chedAl bum = em fi nd(Al bum cl ass, al bumgetld());
assert Not Sarme(al bum fetchedAl bum;

assert Equal s(al bumtoString(), fetchedAl bumtoString());

8.1.4.3. Removing Entities from Persistent Storage

To remove a persistent managed entity, pass it to the Ent i t yManager . r enove() method. As the
cascade rules specify, related entities will also be removed recursively.

Once an entity has been removed and the entity manager’s state has been flushed, the entity
object is unmanaged and back in the new state.

101

Chapter 8. Errai JPA

8.1.4.3.1. Clearing all Local Storage

Errai's EntityManager class provides a r enoveAl | () method which removes everything from the
browser’s persistent store for the domain of the current webpage.

This method is not part of the JPA standard, so you must down-cast your client-side
Enti t yManager instance to Errai Enti t yManager . Example:

@nt r yPoi nt
public class Main {
@nject EntityManager em

voi d resetJpaStorage() {
((Errai EntityManager) em.renoveAl l ();

8.1.4.4. Detaching Entity Instances from the Entity Manager

For every entity instance in the managed state, changes to the attribute values of that entity
are persisted to local storage whenever the entity manager is flushed. To prevent this automatic
updating from happening, you can detach an entity from the entity manager. When an instance
is detached, it is not deleted. All information about it remains in persistent storage. The next time
that entity is retrieved, the entity manager will create a new and separate managed instance for it.

To detach one particular object along with all related objects whose cascade rules say so, call
Ent it yManager . det ach() and pass in that object.

To detach all objects from the entity manager at once, call Enti t yManager . det achAl | () .
8.1.4.5. Testing if an Entity is in the Managed State

To check if a given object is presently managed by the entity manager, call
Enti t yManager . cont ai ns() and pass in the object of interest.

8.1.5. Named Queries

To retrieve one or more entities that match a set of criteria, Errai JPA allows the use of JPA named
queries. Named queries are declared in annotations on entity classes.

8.1.5.1. Declaring Named Queries

Queries in JPA are written in the JPQL language. As of Errai 2.1, Errai JPA does not support
all JPQL features. Most importantly, implicit and explicit joins in queries are not yet supported.
Queries of the following form generally work:

102

Entity Lifecycle Events

SELECT et FROM EntityType et WHERE [expression with constants, named paraneters and attri butes

Here is how to declare a JPQL query on an entity:

@NanmedQuer y(nane="sel ect Al bunByNane", query="SELECT a FROM Album a WHERE
a. nane=: nane")
@ntity
public class Al bum {
same as before ...

To declare more than one query on the same entity, wrap the @lanedQuery annotations in
@anedQueri es like this:

@lanmedQueri es({
@\amedQuer y(nane="sel ect Al bunByNane", query="SELECT a FROM Al buma WHERE a. nane
= ! nane"),
@NanedQuer y(nane="sel ect Al bunsAfter", query="SELECT a FROM Al bum a WHERE
a.rel easeDate >= :startDate")

}

@ntity

public class A bum {
sane as before ...

8.1.5.2. Executing Named Queries

To execute a named query, retrieve it by name and result type from the entity manager, set the
values of its parameters (if any), and then call one of the execution methods get Si ngl eResul t ()
orgetResul tList().

Example:

TypedQuer y<Al bun®> q = em cr eat eNanedQuer y("sel ect Al bunByNane", Al bum cl ass);
g. set Paraneter ("nane", "Let It Be");
Li st <Al bunme> fetchedAl bunms = . get Resul tList();

8.1.6. Entity Lifecycle Events

To receive a notification when an entity instance transitions from one lifecycle state to another,
use an entity lifecycle listener.

103

Chapter 8. Errai JPA

These annotations can be applied to methods in order to receive notifications at certain points in
an entity’s lifecycle. These events are delivered for direct operations initiated on the EntityManager
as well as operations that happen due to cascade rules.

Annotation Meaning

@r ePer si st The entity is about to be persisted or merged
into the entity manager.

@ost Per si st The entity has just been persisted or merged
into the entity manager.

@r eUpdat e The entity’s state is about to be captured into
the browser’s localStorage.

@Post Updat e The entity’s state has just been captured into
the browser’s localStorage.

@r eRenpve The entity is about to be removed from
persistent storage.

@ost Renpve The entity has just been removed from
persistent storage.

@Post Load The entity’s state has just been retrieved from
the browser’s localStorage.

JPA lifecycle event annotations can be placed on methods in the entity type itself, or on a method
of any type with a public no-args constructor.

To receive lifecycle event notifications directly on the affected entity instance, create a no-args
method on the entity class and annotate it with one or more of the lifecycle annotations in the
above table.

For example, here is a variant of the Album class where instances receive notification right after
they are loaded from persistent storage:

@ntity

public class A bum {
same as before ...

@Post Load
public void postLoad() {
Systemout.println("Album" + getNane() + " was just |oaded into the entity
manager") ;

}

104

JPA Metamodel

To receive lifecycle methods in a different class, declare a method that takes one parameter of
the entity type and annotate it with the desired lifecycle annotations. Then name that class in the
@ntityLi st eners annotation on the entity type.

The following example produces the same results as the previous example:

@ntity
@ntityLi steners(Standal onelLi fecycl eLi st ener. cl ass)
public class Al bum {

same as al ways ...

public class Standal oneLi fecycl eLi stener {

@ost Load
public void al bumLoaded(Al bum a) {
public void postLoad() {
Systemout.println("Album " + a.getNanme() + " was just |oaded into the
entity manager");

}

8.1.7. JPA Metamodel

Errai captures structural information about entity types at compile time and makes them available
in the GWT runtime environment. The JPA metamodel includes methods for enumerating all
known entity types and enumerating the singular and plural attributes of those types. Errai extends
the JPA 2.0 Metamodel by providing methods that can create new instances of entity classes, and
read and write attribute values of existing entity instances.

As an example of what is possible, this functionality could be used to create a reusable Ul widget
that can present an editable table of any JPA entity type.

To access the JPA Metamodel, call the Enti t yManager . get Met anodel () method. For details
on what can be done with the stock JPA metamodel, see the API's javadoc or consult the JPA
specification.

8.1.7.1. Errai Extensions to JPA Metamodel API

Wherever you obtain an instance of Si ngul arAttri bute from the metamodel API, you can
down-cast it to Errai Si ngul ar Attri but e. Likewise, you can down-cast any Pl ural Attri bute
to Errai Plural Attribute.

105

Chapter 8. Errai JPA

In either case, you can read the value of an arbitrary attribute by calling Errai Attri but e. get ()
and passing in the entity instance. You can set any attribute’'s value by calling
Errai Attri bute. set (), passing in the entity instance and the new value.

In additionto get () andset (), Errai Pl ural Attri but e also hasthe creat eEnpt yCol | ecti on()
method, which creates an empty collection of the correct interface type for the given attribute.

8.1.8. JPA Features Not Implemented in Errai 2.4

The following features are not yet implemented, but could conceivably be implemented in a future
Errai JPA release:

* Flush modes other than immediate
» Transactions, including EntityManager.getTransaction()
* In named queries:

« Joins and nested attribute paths (a. b. ¢) do not yet work, although single-step attribute paths
(a. b) do.

» The SELECT clause must specify exactly one entity type. Selection of individual attributes is not
yet implemented.

» Embedded collections
« Compound identifiers (presently, only basic types are supported for entity IDs)

e EntityMnager.refresh() to pick up changes made in localStorage from a different browser
window/tab.

« Criteria Queries
» The generated static Metamodel

» The @per si st enceCont ext annotation currently has no effect in client-side code (use @ nj ect
instead)

The following may never be implemented due to limitations and restrictions in the GWT client-
side environment:

e EntityMnager.createQuery(String, ..) (thatis, unnamed queries) are impractical because
JPQL queries are parsed at compile time, not in the browser.

e EntityManager.createNativeQuery(String, .) don't make sense because the underlying
database is just a hash table. It does not have a query language.

 Persistent attributes of type j ava. uti | . Cal endar because the Cal endar class is notin GWT's
JRE emulation library.

8.1.9. Other Caveats for Errai 2.1 JPA

We hope to remedy these shortcomings in a future release.

106

Errai JPA Data Sync

« In Dev Mode, changes to entity classes are not discovered on page refresh. You need to restart
Dev Mode.

» The local data stored in the browser is not encrypted

8.2. Errai JPA Data Sync

Traditional JPA implementations allow you to store and retrieve entity objects on the server side.
Errai’s JPA implementation allows you to store and retrieve entity objects in the web browser using
the same APIs. All that's missing is the ability to synchronize the stored data between the server
side and the client side.

This is where Errai JPA Data Sync comes in: it provides an easy mechanism for two-way
synchronization of data sets between the client and the server.

8.2.1. How To Use It

ﬁ Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai JPA
Datasync to follow along with this section.

Manual Setup Section

8.2.1.1. A Running Example

For the rest of this chapter, we will refer to the following Entity classes, which are defined in a
shar ed package that'’s visible to client and server code:

@ortabl e

@ntity

@NamedQuery(nane = "all Users", query = "SELECT u FROM User u")
public class User {

@d
@:ener at edVal ue
private long id;

private String nane;

/] getters and setters onmitted

107

Chapter 8. Errai JPA

@vor t abl e

@ntity

@lanmedQuery(nanme = "grocerylistsForUser", query = "SELECT gl FROM G ocerylLi st
gl VWHERE gl . owner =: user")

public class GoceryList {

@d
@zxner at edVal ue
private long id;

@manyToOne
private User owner;

@neToMany(cascade = { CascadeType. PERSI ST, CascadeType. MERGE, CascadeType. REFRESH })
private List<ltem> itenms = new ArraylList<ltens();

/] getters and setters onmtted

@ortabl e

@ntity

@NamedQuery(nane = "allltens", query = "SELECT i FROM Itemi")
public class Item {

@d
@ener at edVal ue
private long id;

private String nane;
private String departnent;
private String coment;
private Date addedOn;

@mnyToOne(cascade = { CascadeType. PERSI ST, CascadeType. MERGE, CascadeType. REFRESH })
private User addedBy;

/] getters and setters omtted

To summarize: there are three entity types: User, GroceryLi st, and It em. Each GroceryLi st
belongs to a User and has a list of I t emobjects.

108

How To Use It

@ Note
All the entities involved in the data synchronization request must be marshallable
via Errai Marshalling. This is normally accomplished by adding the @ort abl e
annotation to each JPA entity class, but it is also acceptable to list them in
Errai App. properties . See the section for more details.

Now let's say we want to synchronize the data for all of a user’'s grocery lists. This will make
them available for offline use through Errai JPA, and at the same time it will update the server
with the latest changes made on the client. Ultimately, the sync operation is accomplished via an
annotated method or an asynchronous call into d i ent SyncManager , but first we have to prepare
a few things on the client and the server.

8.2.1.2. Server Side DataSyncServicelmpl

A data sync operation begins when the client-side sync manager sends an Errai RPC request
to the server. Although a server-side implementation of the remote interface is provided, you are
responsible for implementing a thin wrapper around it. This wrapper serves two purposes:

1. It allows you to determine how to obtain a reference to the JPA EntityManager (and to choose
which persistence context the server-side data sync will operate on)

2. It allows you to inspect the contents of each sync request and make security decisions about
access to particular entities

If you are deploying to a container that supports CDI and EJB 3, you can use this
DataSyncServicelmpl as a template for your own:

@Bt atel ess @rg.j boss. errai.bus. server. annotations. Servi ce
public class DataSyncServicel npl inplenents DataSyncService {

@Per si st enceCont ext
private EntityManager em

private final JpaAttributeAccessor attributeAccessor = new JavaRefl ecti onAttri buteAccessor();
@nject private Logi nService |oginService;

@erride
public <X> List<SyncResponse<X>> col dSync(Syncabl eDat aSet <X> dat aSet, Li st<SyncRequest Oper ati

/1l Ensure a user is |logged in
User currentUser = | ogi nService.whoAmn ();
if (currentUser == null) {
throw new |1 egal St at eExcepti on("Nobody is |ogged in!");

109

Chapter 8. Errai JPA

/1l Ensure user is accessing their own datal
i f (dataSet.get QueryName().equal s("grocerylListsForUser")) {
User requestedUser = (User) dataSet.getParaneters().get("user");
if ('currentUser.getld().equal s(requestedUser.getld())) {
t hrow new AccessDeni edExcepti on("You don't have perm ssion to sync user
+ request edUser. getld());

}
}
el se {
throw new 111 egal Argunent Exception("You don't have perm ssion to sync
dataset " + dataSet.get QueryNane());
}

Dat aSyncServi ce dss = new org.jboss. errai.jpa.sync.server. DataSyncServicel npl (em attribute

return dss. col dSync(dataSet, renoteResults);

If you are not using EJB 3, you will not be able to use the @er si st enceCont ext annotation. In
this case, obtain a reference to your EntityManager the same way you would anywhere else in
your application.

8.2.1.3. Client Side — Declarative

Like many Errai features, Errai JPA DataSync provides an annotation-driven programming model
and a programmatic API. You can choose which to use based on your needs and preferences.

The declarative data sync API is driven by the @ync annotation. Consider the following example
client-side class:

/1 This injected User object coul d have been set up in a @Post Construct nethod
i nstead of being injected.

@ nj ect

private User syncThi sUser;

@ync(query = "grocerylistsForUser", params = { @yncParan(name = "user", val
private void onDat aSyncConpl et e(SyncResponses<G oceryLi st> responses) {
W ndow. al ert ("Data Sync Conplete!");

By placing the above code snippet in a client-side bean, you tell Errai JPA Data Sync that, as long
as a managed instance of the bean containing the @ync method exists, the Data Sync system
should keep all grocery lists belonging to the syncThi sUser user in sync between the client-side
JPA EntityManager and the server-side EntityManager. Right now, the data sets are kept in sync

110

= "{syncThi sUse

How To Use It

using a sync request every 5 seconds. In the future, this may be optimised to an incremental
approach that pushes changes as they occur.

The annotated method needs to have exactly one parameter of type SyncResponses and will be
called each time a data sync operation has completed. All sync operations passed to the method
will have already been applied to the local EntityManager, with conflicts resolved in favour of the
server's version of the data. The original client values are available in the SyncResponses object,
which gives you a chance to implement a different conflict resolution policy.

The query attribute on the @ync annotation must refer to an existing JPA Named Query that is
defined on a shared JPA entity class.

The parans attribute is an array of @yncParam annotations. There must be exactly one
@yncPar am for each named parameter in the JPA query (positional parameters are not
supported). If the val argument is surrounded with brace brackets (as it is in the example aboce)
then it is interpreted as a reference to a declared or inherited field in the containing class.
Otherwise, it is interpreted as a literal String value.

@ Note
Field-reference sync params are captured just after the bean’s @ost Const r uct
method is invoked. This means that values of referenced fields can be provided
using @ nj ect (which in turn could come from a CDI Producer method) or by code
in the @ost Const r uct method.

Transport (network) errors are logged to the slf4j logger channel
org.jboss.errai.jpa.sync.client.local.dientSyncWwrker. As of Errai 3.0.0.M4, it is not
possible to specify a custom error handler using the declarative API. See the next section for
information about the programmatic API.

8.2.1.4. Client Side — Programmatic

@nject private dient SyncManager syncManager;
@nject private EntityManager em

public void syncG ocerylLists(User forUser) {
Renot eCal | back<Li st <SyncResponse<G oceryLi st >>> onConpl eti on = new Renot eCal | back<Li st <Sync
@verride
public void call back(Li st<SyncResponse<GoceryList>> response) {
W ndow. al ert ("Data Sync Conplete!");
}
b

Error Cal | back<?> onError = new BusErrorCal | back() {

@verride

111

Chapter 8. Errai JPA

publi c bool ean error(Message nmessage, Throwabl e throwabl e) {
W ndow. al ert ("Data Sync failed!");
return fal se;
}
iE

Map<String, Cbject> queryParans = new HashMap<String, Object>();
quer yPar ams. put ("user", forUser);

syncManager . col dSync("grocerylLi stsForUser", G ocerylist.class, queryParans, onConpletion,

Important

The onConpl eti on and onError callbacks are optional. In the unlikely case that
your application doesn'’t care if a data sync request completed successfully, you
can pass nul | for either callback.

Once your onConpl et i on callback has been notified, the server and client will have the same
entities stored in their respective databases for all entities reachable from the given query result.

8.2.1.5. Dealing With Conflicts

When the client sends the sync request to the server, it includes information about the state it
expects each entity to be in. If an entity’s state on the server does not match this expected state
on the client, the server ignores the client's change request and includes a Conf | i ct Response
object in the sync reply.

When the client processes the sync responses from the server, it applies the new state from the
server to the local data store. This overwrites the change that was initially requested from the
client. In short, you could call this the "server wins" conflict resolution policy.

In some cases, your application may be able to do something smarter: apply domain-specific
knowledge to merge the conflict automatically, or prompt the user to perform a manual merge.
In order to do this, you will have to examine the server response from inside the onConpl eti on
callback you provided to the col dSync() method:

Renot eCal | back<Li st <SyncResponse<G oceryLi st >>> onConpl eti on = new Renot eCal | back<Li st <Sync
@verride
public void call back(List<SyncResponse<G oceryLi st>> responses) {
for (SyncResponse<G ocerylList> response : responses) {
if (response instanceof ConflictResponse) {
Conflict Response<GroceryList> cr = (ConflictResponse<G ocerylList>) response;
Li st<ltenmr expectedltens = cr.get Expected().getltens();
List<lten> serverltens = cr.getActual New().getltens();

112

How To Use It

List<lten> clientltens = cr.get RequestedNew().getltens();

/'l merge the list of itens by conparing each to expectedltens
List<ltem> nmerged = ...;

/| update |local storage with the nmerged |i st
em find(GoceryList.class, cr.getActual New().getld()).setltens(nerged);
em flush();

Remember, because of Errai's default “"server wins" resolution policy, the call to
em find(GocerylList.class, cr.getActual New().getld()) will return a GroceryList object
that has already been updated to match the state present in server |t ens.

113

114

Chapter 9.

Data Binding

Errai’'s data binding module provides the ability to bind model objects to Ul fields/widgets. The
bound properties of the model and the Ul components will automatically be kept in sync for as
long as they are bound. So, there is no need to write code for Ul updates in response to model
changes and no need to register listeners to update the model in response to Ul changes.

9.1. Getting Started

The data binding module is directly integrated with Errai Ul and Errai JPA but can also be used
as a standalone project in any GWT client application:

w Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai Data
Binding to follow along with this section.

Manual Setup Section

9.1.1. Bindable Objects

Objects that should participate in data bindings have to be marked as @i ndabl e and must follow
Java bean conventions. All editable properties of these objects are then bindable to Ul widgets.

Example 9.1. Customer.java
@i ndabl e
public class Customer {
private String nane;
public String getName() {

return name,

public void setNane(String name) {
t hi s. nane = nane;

115

Chapter 9. Data Binding

Important

If you cannot or prefer not to annotate your classes with @Bi ndabl e,
you can alternatively specify bindable types in your ErraiApp.properties
using a Wwhitespace-separated list of fully qualified class names:
errai. ui.bi ndabl eTypes=or g. exanpl e. Model 1 or g. exanpl e. Mbdel 2

9.1.2. Initializing a DataBinder

An instance of Dat aBi nder is required to create bindings. It can either be

injected into a client-side bean:

public class CustomerView {
@ nj ect
privat e Dat aBi nder <Cust oner > dat aBi nder;

or created manually:
Dat aBi nder <Cust onmer > dat aBi nder = Dat aBi nder . f or Type(Cust oner . cl ass);

In both cases above, the Dat aBi nder instance is associated with a new instance of the model (e.g.
a new Cust omer object). A Dat aBi nder can also be associated with an already existing object:

Dat aBi nder <Cust omer > dat aBi nder = Dat aBi nder . f or Model (exi sti ngCust oner Cbj ect) ;

In case there is existing state in either the model object or the Ul components before the they are
bound, initial state synchronization can be carried out to align the model and the corresponding
Ul fields.

For using the model object’s state to set the initial values in the Ul:
Dat aBi nder <Cust onmer > dat aBi nder = Dat aBi nder . f or Model (exi stingCust oner Cbj ect, Initial State. FRO

For using the Ul values to set the initial state in the model object:

116

Creating Bindings

Dat aBi nder <Cust omer > dat aBi nder = Dat aBi nder. f or Mbdel (exi sti ngCust oner Cbj ect, Initial State. FRO

9.2. Creating Bindings

Bindings can be created by calling the bi nd method on a Dat aBi nder instance, thereby specifying
which widgets should be bound to which properties of the model. It is possible to use property
chains for bindings, given that all nested properties are of bindable types. When binding to
cust omer . addr ess. st r eet Narre, for example, both cust omer and addr ess have to be of a type
annotated with @i ndabl e.

public class CustomerView {
@ nj ect
private Dat aBi nder <Cust oner > dat aBi nder ;

private Custoner custoner;
private Text Box nanmeText Box = new Text Box();
/1 nmore U widgets...

@ost Const ruct
private void init() {
custoner = dat aBi nder
. bi nd(naneText Box, "nane")
. bi nd(i dLabel , "id")
. get Model () ;

After the call to dat aBi nder . bi nd() in the example above, the customer object’'s name property
and the naneText Box are kept in sync until either the dat aBi nder . unbi nd() method is called or
the Cust omrer Vi ew bean is destroyed.

That means that a call to custoner. set Name() will automatically update the value of the
TextBox and any change to the TextBox's value in the browser will update the customer object’s
name property. So, cust omer . get Name() will always reflect the currently displayed value of the
Text Box.

@ Note

It's important to retrieve the model instance using dataBinder.getModel() before
making changes to it as the data binder will provide a proxy to the model to ensure
that changes will update the corresponding Ul components.

117

Chapter 9. Data Binding

Tip

Errai also provides a declarative binding API that can be used to create bindings
automatically based on matching field and model property names.

9.3. Specifying Converters

Errai has built-in conversion support for all Number types as well as Boolean and Date to
java.lang.String and vice versa. However, in some cases it will be necessary to provide custom
converters (e.g. if a custom date format is desired). This can be done on two levels.

9.3.1. Registering a global default converter

@ef aul t Converter
public class MyCustonDat eConverter inplenments Converter<Date, String> {

private static final String DATE_FORMVAT = "YY_DD MV';

@verride
public Date toMdel Val ue(String w dgetVal ue) {
return DateTi neFor mat . get For nat (DATE_FORVAT) . par se(wi dget Val ue) ;

@verride
public String toW dget Val ue(Dat e nodel Val ue) {
return DateTi neFor mat . get For nat (DATE_FORMAT) . f or mat ((Dat €) nodel Val ue) ;

All converters annotated with @ef aul t Converter will be registered as global defaults calling
Convert . regi st er Def aul t Converter (). Note that the Converter interface specifies two type
parameters. The first one represents the type of the model field, the second one the type held by
the widget (e.g. St ri ng for widgets implementing HasVal ue<St ri ng>). These default converters
will be used for all bindings with matching model and widget types.

9.3.2. Providing a binding-specific converter

Alternatively, converter instances can be passed to the dat aBi nder . bi nd() calls.
dat aBi nder . bi nd(t ext Box, "nanme", custonConverter);

Converters specified on the binding level take precedence over global default converters with
matching types.

118

Property Change Handlers

9.4. Property Change Handlers

In some cases keeping the model and the Ul in sync is not enough. Errai's Dat aBi nder allows
for the registration of PropertyChangeHand! ers for specific properties, property expressions
or all properties of a bound model. A property expression can be a property chain such as
customer.address.street. It can end in a wildcard to indicate that changes of any property of the
corresponding bean should be observed (e.g "cust onmer. addr ess. *"). A double wildcard can
be used at the end of a property expression to register a cascading change handler for any nested
property (e.g "customer.\ **"),

This provides a uniform notification mechanism for model and Ul value changes.
Pr oper t yChangeHandl er s can be used to carry out any additional logic that might be necessary
after a model or Ul value has changed.

dat aBi nder . addPr opert yChangeHand| er (new PropertyChangeHandl er () {

@verride
public void onPropertyChange(PropertyChangeEvent event) {
W ndow. al ert (event. get PropertyName() + " changed to:" + event. get Newal ue());

}
1),

dat aBi nder . addPr oper t yChangeHand! er (" name", new PropertyChangeHandl er () {

@verride
public void onPropertyChange(PropertyChangeEvent event) {
W ndow. al ert ("nane changed to:" + event.get Newval ue());

}
1),

9.5. Declarative Binding

Programmatic binding as described above (see Creating Bindings) can be tedious when working
with Ul components that contain a large number of input fields. Errai provides an annotation-
driven binding API that can be used to create bindings automatically which cuts a lot of boilerplate
code. The declarative API will work in any Errai IOC managed bean (including Errai Ul templates).
Simply inject a data binder or model object and declare the bindings using @ound .

Here is a simple example using an injected model object provided by the @bdel annotation (field
injection is used here, but constructor and method injection are supported as well):

@ependent
public class CustonerView {

@ nj ect @mbdel
private Custoner custoner;

119

Chapter 9. Data Binding

@ nj ect @ound
private TextBox name;

@ound
private Label id = new Label ();

Here is the same example injecting a Dat aBi nder instead of the model object. This is useful when
more control is needed (e.g. the ability to register property change handlers). The @ut oBound
annotation specifies that this Dat aBi nder should be used to bind the model to all enclosing widgets
annotated with @ound. This example uses field injection again but constructor and method
injection are supported as well.

@ependent
public class CustomerView {
@ nj ect @A\ut oBound
private Dat aBi nder <Cust oner > cust omer Bi nder ;

@ nj ect @ound
private Text Box nane;

@ound
private Label id = new Label ();

In both examples above an instance of the Cust omer model is automatically bound to the
corresponding Ul widgets based on matching field names. The model object and the Ul fields
will automatically be kept in sync. The widgets are inferred from all enclosing fields and methods
annotated with @ound of the class that defines the @ut oBound Dat aBi nder or @bdel and all
its super classes.

9.5.1. Default, Simple, and Chained Property Bindings

By default, bindings are determined by matching field names to property hames on the model
object. In the examples above, the field name was automatically bound to the JavaBeans property
nane of the model (user object). If the field name does not match the model property name,
you can use the property attribute of the @ound annotation to specify the name of the property.
The property can be a simple name (for example, "name") or a property chain (for example,
user . addr ess. st reet Name). When binding to a property chain, all properties but the last in the
chain must refer to @Bindable values.

120

Data Converters

The following example illustrates all three scenarios:

@i ndabl e

public class Address {
private String |inel;
private String |ine2;
private String city;
private String stateProv;
private String country;

/'l getters and setters

@Bi ndabl e

public class User {
private String nane;
private String password;
private Date dob;
private Address address;
private List<Role> roles;

/] getters and setters

@enpl at ed
public class UserWdget {
@ nj ect @\ut oBound Dat aBi nder <User > user;
@ nj ect @ound Text Box nane;
@ nj ect @ound("dob") DatePicker dateOBirth;
@nject @ound("address.city") TextBox city;

In User W dget above, the name text box is bound to user . nane using the default name matching;
the dat e Bi r t h date picker is bound to user . dob using a simple property name mapping; finally,
the ci ty text box is bound to user . addr ess. ci t y using a property chain. Note that the Addr ess
class is required to be @i ndabl e in this case.

9.5.2. Data Converters

The @ound annotation further allows to specify a converter to use for the binding (see Specifying
Converters for details). This is how a binding specific converter can be specified on a data field:

@ nj ect
@ound(convert er =MyDat eConverter. cl ass)
@at aFi el d

121

Chapter 9. Data Binding

private TextBox date;

9.5.3. Replacing a model object

The injected model objects in the examples above are always proxies to the actual model since
method invocations on these objects need to trigger additional logic for updating the Ul. Special
care needs to be taken in case a model object should be replaced.

When working with an @ut oBound Dat aBi nder , simply calling set Model () on the Dat aBi nder
will be enough to replace the underlying model instance. However, when working with @mbdel
the instance cannot be replaced directly. Errai provides a special method level annotation
@nbdel Set t er that will allow replacing the model instance. Here's an example:

@ependent
public class CustomerView {

@ nj ect @mbdel
private Custoner custoner;

@ nj ect @ound
private TextBox name;

@ound
private Label id = new Label ();

@mbdel Setter
public void set Mbdel (Custormer custoner) {
this.custonmer = custoner;

The @mbdel Sett er method is required to have a single parameter. The parameter type needs to
correspond to the type of the managed model.

9.6. Bean validation

Java bean validation (JSR 303) provides a declarative programming model for validating entities.
More details and examples can be found here [http://docs.jboss.org/hibernate/validator/4.3/
reference/en-US/html_single/] . Errai provides a bean validation module that makes Val i dat or
instances injectable and work well with Errai’'s data binding module. The following line needs to
be added to the GWT module descriptor to inherit Errai’'s bean validation module:

Example 9.2. App.gwt.xml

<inherits nane="org.jboss.errai.validation.Validation" />

122

http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/

Bean validation

<inherits nane="org. hi bernate. validator.Hi bernateValidator" />

To use Errai's bean validation module, you must add the module, the javax.validation APl and
an implementation such as hibernate validator to your classpath. If you are using Maven for your
build, add these dependencies:

<dependency>
<groupl d>org. j boss. errai </ groupl d>
<artifactld>errai-validation</artifactld>
<version>${errai.version}</version>

</ dependency>

<dependency>
<groupl d>j avax. val i dati on</ gr oup! d>
<artifactld>validation-api</artifactld>
<scope>provi ded</ scope>

</ dependency>

<dependency>
<groupl d>j avax. val i dati on</ gr oupl d>
<artifactld>validation-api</artifactld>
<cl assi fi er>sources</cl assifier>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact!|d>hi bernate-validator</artifactld>
<version>4. 2. 0. Fi nal </ versi on>
<scope>provi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact!| d>hi bernate-validator</artifactld>
<version>4.2.0. Fi nal </version>
<scope>pr ovi ded</ scope>
<cl assi fi er>sources</cl assifier>

</ dependency>

Now it is as simple as injecting a Val i dat or instance into an Errai IOC managed bean and calling
the val i dat e method.

@ nj ect

123

Chapter 9. Data Binding

private Validator validator;

Set <Constrai nt Vi ol ati on<Cust oner >> vi ol ations = validator.validate(custoner);
/1 display violations

9.6.1. Excluding Classes from Validation

By default, Errai scans the entire classpath for classes with constraints. But sometimes it is
necessary or desirable to exclude some shared classes from being validated on the client side.
This can be done by adding a list of classes and package masks to the ErraiApp.properties file
like so:

The following blacklists the class sone.fully.qualified. dassNane and all
cl asses in sone. package. mask (and subpackages thereof).
errai.validation.blacklist = sone.fully.qualified.C assName \
sone. package. mask. *

124

Chapter 10.

Errai Ul

One of the primary complaints of GWT to date has been that it is difficult to use "pure HTML" when
building and skinning widgets. Inevitably one must turn to Java-based configuration in order to
finish the job. Errai, however, strives to remove the need for Java styling. HTML template files are
placed in the project source tree, and referenced from custom "Composite components" (Errai Ul
Widgets) in Java. Since Errai Ul depends on Errai IOC and Errai CDI, dependency injection is
supported in all custom components. Errai Ul provides rapid prototyping and HTML5 templating
for GWT.

10.1. Get started

The Errai Ul module is directly integrated with Data Binding and Errai JPA but can also be used as
a standalone project in any GWT client application by simply inheriting the Errai Ul GWT module,
and ensuring that you have properly using Errai CDI's @Inject to instantiate your widgets:

Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai Ul to
follow along with this section.

Manual Setup Section

implemented using Errai Ul here

10.2. Use Errai Ul Composite components

Before explaining how to create Errai Ul components, it should be noted that these components
behave no differently from any other GWT Widget once built. The primary difference is in A) their
construction, and B) their instantiation. As with most other features of Errai, dependency injection
with CDI is the programming model of choice, so when interacting with components defined using
Errai Ul, you should always @ nj ect references to your Composite components.

10.2.1. Inject a single instance
@nt r yPoi nt

public class Application {
@ nj ect

125

https://github.com/errai/summit-demo-2013
https://github.com/errai/summit-demo-2013
https://github.com/errai/summit-demo-2013

Chapter 10. Errai Ul

private Col or Conponent conp;

@Post Const ruct

public void init() {
conp. set Col or (" bl ue");
Root Panel . get (). add(conp) ;

10.2.2. Inject multiple instances (for iteration)

@nt r yPoi nt
public class Application {
private String[] colors = new String[]{"Blue", "Yellow', "Red"};

@ nj ect
private |nstance<Col or Conponent > i nst ance;

@ost Const ruct
public void init() {
for(String color: colors) {
Col or Conponent conp = instance. get();
conp. set Col or(c);
Root Panel . get (). add();

10.3. Create a @Templated Composite component

Custom components in Errai Ul are single classes extending from
com googl e. gwt . user. cl i ent. ui . Conposi t e , and must be annotated with @ Templated.

10.3.1. Basic component

@enpl at ed
public class Logi nForm extends Conposite {
/* | ooks for LoginFormhtm in Logi nForm s package */

126

Custom template names

10.3.2. Custom template names

With default values, @Templated informs Errai Ul to look in the current package for a parallel
".htnl" template next to the Composite component Class; however, the template name may be
overridden by passing a String into the @ Templated annotation, like so:

@enpl ated("nmy-tenplate. htm ")
public class Logi nForm extends Conposite {
/* 1 ooks for nmy-tenplate. html in Logi nForm s package */

Fully qualified template paths are also supported, but must begin with a leading /:

@enpl at ed("/ or g/ exanpl e/ my-tenpl ate. htm ")
public class Logi nForm extends Conposite {
/* looks for nmy-tenplate.htm in package org.exanple */

10.4. Create an HTML template

Templates in Errai Ul may be designed either as an HTML snippet or as a full HTML document.
You can even take an existing HTML page and use it as a template. With either approach, the i d
, class , and dat a- fi el d attributes in the template identify elements by name. These elements
and their children are used in the Composite component to add behavior, and use additional
components to add functionality to the template. There is no limit to how many component classes
may share a given HTML template.

We will begin by creating a simple HTML login form to accompany our @enpl at ed Logi nForm
composite component.

<fornme
<l egend>Log in to your account</|egend>

<l abel for="usernane">User name</| abel >
<i nput id="username" type="text" placehol der="User nane">

<l abel for="password">Password</| abel >
<input id="password" type="password" placehol der="Password">

<but t on>Log i n</ button>
<but t on>Cancel </ but t on>
</fornme

127

Chapter 10. Errai Ul

10.4.1. Select atemplate from a larger HTML file

Or as a full HTML document which may be more easily previewed during design without running
the application; however, in this case we must also specify the location of our component’s
root DOM Element using a "data-field" ,id, or cl ass attribute matching the value of the
@Templated annotation. There is no limit to how many component classes may share a given
HTML template.

@enpl at ed("nmy-tenpl at e. ht m #| ogi n-f ornt")
public class Logi nForm extends Conposite {
/* Specifies that <... id="login-form'> be used as the root Elenent of this
W dget */
}

Notice the corresponding HTML i d attribute in the form Element below (we could have used dat a-
field or cl ass instead). Note that multiple components may use the same template provided
that they specify a corresponding data-fi el d,id, orcl ass attribute. Also note that two or more
components may share the same DOM elements; there is no conflict since components each
receive a unigue copy of the template DOM rooted at the designated element at runtime (or from
the root element if a fragment is not specified.)

<! DOCTYPE ht ml >
<htm | ang="en">

<head>
<title>A full HTM. snippet</title>
</ head>
<body>
<di v>
<formid="1ogin-forn>
<l egend>Log in to your account</|egend>
<l abel for="usernane">User name</| abel >
<i nput id="username" type="text" placehol der="User nane">
<l abel for="usernane">Password</| abel >
<input id="password" type="password" placehol der="Password">
<butt on>Log i n</ button>
<but t on>Cancel </ but t on>
</form
</ di v>
<hr >

<footer id="thenme-footer">
<p>(c) Conpany 2012</p>

128

Use other Widgets in a composite component

</ footer>
</ body>
</htm >

For example’s sake, the component below could also use the same template. All it needs to do
is reference the template name, and specify a fragment.

@enpl at ed(" ny-tenpl ate. ht m #t heme-f ooter")
public class Footer extends Conposite {
/* Specifies that <... id="thene-footer"> be used as the root Elenent of
this Wdget */
}

10.5. Use other Widgets in a composite component

Now that we have created the @Templated Composite component and an HTML template, we
can start wiring in functionality and behavior; this is done by annotating fields and methods to
replace specific sub-elements of the template DOM with other Widgets. We can even replace
portions of the template with other Errai Ul Widgets!

10.5.1. Annotate Widgets in the template with @DataField

In order to composite Widgets into the template DOM, you annotate fields in your @Templated
Composite component with @DataField, and mark the HTML template Element with a
correspondingly named dat a-fi el d, i d, orcl ass attribute. This informs Errai Ul which element
in the template the Widget should replace. All replacements happen while the @Templated
Composite component is being constructed; thus, fields annotated with @DataField must either
be {{@Inject}}ed or provide their own Widget or Element instances in field initializers.

@enpl at ed
public class Logi nForm ext ends Conposite {

/1 This elenment nust be initialized nmanually because El enent is not @nject-
abl e*/

@at aFi el d

private El ement form = DOM creat eFormn();

[l 1f not otherw se specified, the name to match in the HTM. tenpl ate defaults
to the nane of the field; in this case, the nane woul d be "usernanme"

@ nj ect

@at aFi el d

private Text Box usernane;

/1 The name to reference in the tenplate can al so be specified manual |y
@ nj ect

129

Chapter 10. Errai Ul

@pat aFi el d(" pass")
private PasswordText Box password;

/1 W can al so choose to instantiate our own Wdgets. Injectionis not required.
@at aFi el d
private Button submit = new Button();

Important

Note: Field, method, and constructor injection are all supported by @DataField.

10.5.2. Add corresponding attributes to the HTML template

Each @DataField reference in the Java class must match an element in the HTML template. The
matching of Java references to HTML elements is performed as follows:

1. A name for the Java reference is determined. If the @at aFi el d annotation has a value
argument, that is used as the reference name. For fields, the default reference name is the
field name. Method and constructor parameters have no default name, so they must always
specify a value.

2. Ifthere is an element in the HTML template with attribute dat a- f i el d=name , the Java reference
will point to this element. If there is more than one such element, the Java reference points
to the first.

3. Otherwise, if there is an element in the HTML template with attribute i d=name , the Java
reference will point to this element. If there is more than one such element, the Java reference
points to the first.

4. Otherwise, if there is an element in the HTML template with a CSS style class nane , the Java
reference will point to this element. If there is more than one such element, the Java reference
points to the first. For elements with more than one CSS style, each style name is considered
individually. For example:

<div class="eat drink be-nerry">

matches Java references named eat , drink , or be-nerry .

1. If no matching element is found by this point, it is an error.

130

How HTML templates are merged with Components

If more than one Java reference matches the same HTML element in the template, it is an error.
For example, given a template containing the element <di v cl ass="eat drink be-nerry">,
the following Java code is in error:

@enpl at ed

public class ErroneousTenpl ate extends Conposite {
@ nj ect @pat aField
private Label eat;

@nj ect @pataField
private Label drink;
}

because both fields eat and dri nk refer to the same HTML di v element.

So now we must ensure there are data-fiel d,id, orcl ass attributes in the right places in our
template HTML file. This, combined with the @DataField annotation in our Composite component
allow Errai Ul to determine where and what should be composited when creating component
instances.

<formid="forn>
<l egend>Log in to your account</|egend>

<| abel for="usernane">User nane</| abel >
<input id="username" type="text" placehol der="User nane">

<l abel for="password">Password</| abel >
<i nput data-fiel d="pass" id="password" type="password" pl acehol der =" Passwor d" >

<button id="submt">Log in</button>

<but t on>Cancel </ but t on>
</ fornme

Now, when we run our application, we will be able to interact with these fields in our Widget.

10.6. How HTML templates are merged with
Components

Three things are merged or modified when Errai Ul creates a new Composite component instance:

1. Element attributes are merged from the template to the component

2. DOM Elements are merged from the component to the template

131

Chapter 10. Errai Ul

3. Template element inner text and inner HTML are preserved when the given @pat aFi el d
W dget implements HasText or HasHTM.

10.6.1. Example

10.6.1.1. Composite component class:

@enpl at ed

public class Styl edConponent extends Conposite {
@ nj ect
@at aFiel d("field-1")
private Label div = new Label ();

public Styl edConmponent () {
div.getEl ement ().setAttribute("style", "position: fixed; top: 0; left: 0;");
this.getEl ement().setld("outer-id");

10.6.1.2. Template:

<f or m»

<span dat a-
field="field-1" style="display:inline;"> This element will become a div
</form

This text will be ignored.

10.6.1.3. Output / result:

<formid="outer-id">

<di v dat a-
field="field-1" style="display:inline;"> This element will become a div </div>
</forne

But why does the output look the way it does? Some things happened that may be unsettling at
first, but we find that once you understand why these things occur, you'll find the mechanisms
extremely powerful.

10.6.2. Element attributes (template wins)

When styling your templates, you should keep in mind that all attributes defined in the template
file will take precedence over any preset attributes in your Widgets. This "attribute merge" occurs

132

DOM Elements (component field wins)

only when the components are instantiated; subsequent changes to any attributes after Widget
construction will function normally. In the example we defined a Composite component that applied
several styles to a child Widget in its constructor, but we can see from the output that the styles
from the template have overridden them. If styles must be applied in Java, instead of the template,
@ost Const ruct or other methods should be favored over constructors to apply styles to fully-
constructed Composite components.

10.6.3. DOM Elements (component field wins)

Element composition, however, functions inversely from attribute merging, and the defined
in our template was actually be replaced by the <di v> Label in our Composite component field.
This does not, however, change the behavior of the attribute merge - the new <di v> was still be
rendered inline, because we have specified this style in our template, and the template always wins
in competition with attributes set programatically before composition occurs. In short, whatever
is inside the @at aFi el d in your class will replace the children of the corresponding element in
your template.

10.6.4. Inner text and inner HTML (preserved when component
implements HasText or HasHTML)

Additionally, because Label implements both HasText and HasHTM. (only one is required,) the
contents of this "field-1" Element in the template were preserved; however, this would not
have been the case if the @at aFi el d specified for the element did not implement HasText or
HasHTM. . In short, if you wish to preserve text or HTML contents of an element in your template,

you can do one of two things: do not composite that Element with a @at aFi el d reference, or
ensure that the Widget being composited implements HasText or HasHTM..

10.7. Event handlers

Dealing with User and DOM Events is a reality in rich web development, and Errai Ul provides
several approaches for dealing with all types of browser events using its "quick handler"
functionality. It is possible to handle:

1. GWT events on Widgets
2. GWT events on DOM Elements

3. Native DOM events on Elements

Important

It is not possible to handle Native DOM events on Widgets because GWT
overrides native event handlers when Widgets are added to the DOM. You must
programatically configure such handlers after the Widget has been added to the
DOM.

133

Chapter 10. Errai Ul

10.7.1. Concepts

Each of the three scenarios mentioned above use the same basic programming model for event
handling: Errai Ul wires methods annotated with @vent Handl er (" ny-data-field") (event
handler methods) to handle events on the corresponding @at aFi el d(" ny-data-fi el d*) inthe
same component. Event handler methods annotated with a bare @vent Handl er annotation (no
annotation parameter) are wired to receive events on the @ Templated component itself.

10.7.2. GWT events on Widgets

Probably the simplest and most common use-case, this approach handles GWT Event classes
for Widgets that explicitly handle the given event type. If a Widget does not handle the Event type
given in the @vent Handl er method’s signature, the application will fail to compile and appropriate
errors will be displayed.

@renpl at ed
public class W dget Handl er Conponent extends Conposite {

@ nj ect
@at aFi el d("b1")
private Button button;

@tvent Handl er (" b1")
public void doSonet hi ngC1(C i ckEvent e) {
/1 do sonet hi ng

10.7.3. GWT events on DOM Elements

Errai Ul also makes it possible to handle GWT events on native Elements which are specified
as a @at aFi el d in the component class. This is useful when a full GWT Widget is not available
for a given Element, or for GWT events that might not normally be available on a given Element
type. This could occur, for instance, when clicking on a <di v> , which would normally not have
the ability to receive the GWT d i ckEvent , and would otherwise require creating a custom DIV
Widget to handle such an event.

@enpl at ed
public class El ement Handl er Conponent ext ends Comnposite {

@pat aFi el d("div-1")
private Di vVEl ement button = DOM createDiv();

@tvent Handl er ("di v-1")
public void doSonet hingCl(C i ckEvent e) {

134

Native DOM events on Elements

/1 do sonething

10.7.4. Native DOM events on Elements

The last approach is handles the case where native DOM events must be handled, but no
such GWT event handler exists for the given event type. Alternatively, it can also be used for
situations where Elements in the template should receive events, but no handle to the Element
the component class is necessary (aside from the event handling itself.) Native DOM events do
not require a corresponding @at aFi el d be configured in the class; only the HTML dat a-fi el d
,id,orclass template attribute is required.

<di v>
this is a hyperlink
<div data-field="div"> Some content </div>

</ di v>

The @i nkNat i ve annotation specifies (as a bit mask) which native events the method should
handle; this sink behaves the same in Errai Ul as it would with DOM si nkEvent s(El ement e, int
bi ts) . Note that a @at aFi el d reference in the component class is optional.

Important

Only one @EventHandler may be specified for a given template element when
@SinkNative is used to handle native DOM events.

@enpl at ed
public class Qui ckHandl er Conponent ext ends Conposite {

@at aFi el d
private AnchorEl enent |ink = DOM createAnchor().cast();

@vent Handl er ("Ii nk")
@i nkNat i ve(Event. ONCLI CK | Event. ONMOUSEOVER)
public void doSonet hi ng(Event e) {

/1 do sonet hing

@vent Handl er ("di v")

@i nkNat i ve(Event . ONMOUSEOVER)

public void doSomnet hi ngEl se(Event e) {
/'l do something el se

135

Chapter 10. Errai Ul

10.8. HTML Form Support

Using asynchronous Javascript calls often make realizing the benefits of modern browsers difficult
when it comes to form submission. But there is nhow a base class in Errai Ul for creating
@enpl at ed form widgets that are perfect for tasks such as creating a login form.

10.8.1. A Login Form that Triggers Browsers' "Remember

Password" Feature

Here is a sample @enpl at ed login form class. This form has:

* auser nane text field
« apassword field

* a button that with a click handler that attempts to login asynchronously

@ependent
@enpl at ed

public class Logi nForm ext ends Abstract Form { L1

@ nj ect
private Call er<AuthenticationServi ce> authenticationServiceCaller;

@ nj ect
@at aFi el d
private Text Box username;

@ nj ect
@at aFi el d
private PasswordText Box password;

@pat aFi el d
private final FornEl enent form= DOM createForm); 2

@ nj ect
@pat aFi el d

private Button login; ©

@verride
prot ect ed FornEl enent get FornEl enent () {

136

Using the Correct Elements in the Template

return form L4]

@vent Handl er ("I ogi n")
private void | oginClicked(CickEvent event) {
aut henti cati onServiceCal | er. cal |l (new Renot eCal | back<User>() {

@verride
public void call back(User response) ({
/1 Now that we're |logged in, subnmit the form

subnit(); @
}

}) .l ogi n(usernane. get Text (), password. get Text());

The key things that you should take from this example:

£) Theclass extends org.jboss.errai.ui.client.w dget.AbstractForm
The f or mfield is a @at aFi el d but it is not injected.

The login button is a regular button widget, with a click handling method below.

Q00

The get For nEl ement method inherited from Abst r act For mmust return the For nEl enent
that will be submitted.

After the user has successfully logged in asynchronously we call subni t () . This causes form
submission to happen in a way that will not cause the page to refresh, but will still properly
notify the browser of a form submission.

o

When a user successfully logs in via this example, the web browser should prompt them to
remember the username and password (assuming this is a feature of the browser being used).

10.8.2. Using the Correct Elements in the Template

The most likely way to go wrong is to accidentally use the wrong types of elements in your template.
Itis very important that you use a proper f r omelement with i nput elements with the exception of
the submit button. Here is an html template that could accompany the Logi nFor m j ava example
above:

<di v>
<formdata-field="forni>
<i nput type="text" name="usernanme" data-fiel d="username">
<i nput type="password" name="password" data-fiel d="password">
<button data-field="Iogin">Sign |n</button>
</form
</ div>

137

Chapter 10. Errai Ul

To reiterate, notice that the user nanme and passwor d fields are legitimate i nput elements. This
is because we want these values to be submitted when Abst ract Form subni t () is called (so
that the browser notices them). However, we do not want there to be any way to submit the
form other than calling Abst r act For m subni t (), so the but t on element is notably missing the
type="submit" attribute pair.

10.9. Data Binding

A recurring implementation task in rich web development is writing event handler code for updating
model objects to reflect input field changes in the user interface. The requirement to update user
interface fields in response to changed model values is just as common. These tasks require a
significant amount of boilerplate code which can be alleviated by Errai. Errai’'s data binding module
provides the ability to bind model objects to user interface fields, so they will automatically be kept
in sync. While the module can be used on its own, it can cut even more boilerplate when used
together with Errai UL.

In the following example, all @at aFi el ds annotated with @ound have their contents bound
to properties of the data model (a User object). The model object is injected and annotated
with @wbdel , which indicates automatic binding should be carried out. Alternatively, the model
object could be provided by an injected Dat aBi nder instance annotated with @ut oBound , see
Declarative Binding for details.

@enpl at ed
public class Logi nForm extends Conposite {

@ nj ect
@mbdel

private User user;

@ nj ect

@ound

@at aFi el d

private TextBox nane;

@ nj ect

@ound

@at aFi el d

private PasswordText Box password;

@pat aFi el d
private Button submit = new Button();

Now the user object and the username and password fields in the Ul are automatically
kept in sync. No event handling code needs to be written to update the user object
in response to input field changes and no code needs to be written to update

138

Default, Simple, and Chained Property Bindings

the Ul fields when the model object changes. So, with the above annotations in
place, it will always be true that user. get User name(). equal s(user nanme. get Text ()) and
user. get Passwor d() . equal s(password. get Text()) .

10.9.1. Default, Simple, and Chained Property Bindings

By default, bindings are determined by matching field names to property hames on the model
object. In the example above, the field nane was automatically bound to the JavaBeans property
name of the model (user object). If the field name does not match the model property name,
you can use the pr oper t y attribute of the @ound annotation to specify the name of the property.
The property can be a simple name (for example, "name") or a property chain (for example,
user . addr ess. street Name). When binding to a property chain, all properties but the last in the
chain must refer to @Bindable values.

The following example illustrates all three scenarios:

@Bi ndabl e

public class Address {
private String |inel;
private String line2;
private String city;
private String stateProv;
private String country;

/]l getters and setters

@Bi ndabl e

public class User {
private String namne;
private String password;
private Date dob;
private Address address;
private List<Role> roles;

/'l getters and setters

@enpl at ed
public class User Wdget extends Conposite {
@ nj ect @\t oBound Dat aBi nder <User > user;
@ nj ect @ound Text Box nane;
@ nj ect @ound("dob") DatePicker dateOfBirth;
@nject @ound("address.city") TextBox city;

139

Chapter 10. Errai Ul

In User W dget above, the name text box is bound to user . nanme using the default name matching;
the dat e Bi r t h date picker is bound to user . dob using a simple property name mapping; finally,
the ci ty text box is bound to user . addr ess. ci t y using a property chain. Note that the Addr ess
class is required to be @i ndabl e in this case.

10.9.2. Binding of Lists

Often you will need to bind a list of model objects so that every object in the list is bound to a
corresponding widget. This task can be accomplished using Errai UI's Li st W dget class. Here’s
an example of binding a list of users using the User W dget class from the previous example. First,
we need to enhance User W dget to implement HasModel .

@enpl at ed
public class User Wdget extends Conposite inplenments HasMbdel <User > {
@ nj ect @A\ut oBound Dat aBi nder <User > user Bi nder ;
@ nj ect @ound Text Box nane;
@ nj ect @ound("dob") DatePicker dateOfBirth;
@nject @ound("address.city") TextBox city;

public User get Mddel () {
user Bi nder . get Model () ;

public void set Model (User user) {
user Bi nder. set Mbdel (user);

Now we can use User W dget to display items in a list.

@enpl at ed
public class MyConposite extends Conposite {

@nject @ataField ListWdget<User, UserW dget> userListWdget;

@Post Construct
public void init() {
Li st <User> users =
user Li st Wdget . setltens(users);

Calling set I t ens on the user Li st W dget causes an instance of User W dget to be displayed for
each user in the list. The User W dget is then bound to the corresponding user object. By default,
the widgets are arranged in a vertical panel. However, Li st W dget can also be subclassed to

140

Binding of Lists

provide alternative behaviour. In the following example, we use a horizontal panel to display the
widgets.

public class UserListWdget extends ListWdget<User, UserW dget> {

public UserlList() {
super (new Hori zont al Panel ());

@ost Const ruct

public void init() {
Li st<User> users =
setltens(users);

@verride
public C ass<User W dget > get|temN dget Type() {
return User Wdget. cl ass;

10.9.2.1. Binding lists with @Bound

An instance of Li st W dget can also participate in automatic bindings using @ound . In this case,
set | t ems never needs to be called manually. The bound list property and displayed items will
automatically be kept in sync. In the example below a list of user roles is bound to a Li st W dget
that displays and manages a Rol eW dget for each role in the list. Every change to the list returned
by user. get Rol es() will now trigger a corresponding update in the Ul.

@enpl at ed
public class UserDetail View extends Conposite {

@ nj ect

@ound

@at aFi el d

private TextBox nane;

@ nj ect

@ound

@at aFi el d

private PasswordText Box password;

@ nj ect

@ound

@at aFi el d

private ListWdget<Role, RoleWdget> roles;

141

Chapter 10. Errai Ul

@at aFi el d
private Button submt = new Button();

@ nj ect @ubdel
private User user;

10.9.3. Data Converters

The @ound annotation further allows to specify a converter to use for the binding (see Specifying
Converters for details). This is how a binding specific converter can be specified on a data field:

@ nj ect

@ound(convert er =MyDat eConverter. cl ass)
@at aFi el d

private TextBox date;

Errai's Dat aBi nder also allows to register Pr oper t yChangeHandl er s for the cases where keeping
the model and Ul in sync is not enough and additional logic needs to be executed (see Property
Change Handlers for detalils).

10.10. Nest Composite components

Using Composite components to build up a hierarchy of widgets functions exactly the same as
when building hierarchies of GWT widgets. The only distinction might be that with Errai Ul, @ nj ect
is preferred to manual instantiation.

@enpl at ed
public class Conponent One extends Conposite {

@ nj ect
@pat aFi el d(" ot her - conmp")
private Conponent Two two;

10.11. Extend Composite components

Templating would not be complete without the ability to inherit from parent templates, and Errai
Ul also makes this possible using simple Java inheritance. The only additional requirement is that
Composite components extending from a parent Composite component must also be annotated
with @ Templated, and the path to the template file must also be specified in the child component’'s
annotation. Child components may specify @at aFi el d references that were omitted in the parent

142

Template

class, and they may also override @at aFi el d references (by using the same dat a- f i el d name)
that were already specified in the parent component.

10.11.1. Template

Extension templating is particularly useful for creating reusable page layouts with some shared
content (navigation menus, side-bars, footers, etc.) where certain sections will be filled with unique
content for each page that extends from the base template; this is commonly seen when combined
with the MVP design pattern traditionally used in GWT applications.

<di v class="contai ner">
<di v id="header"> Default header </div>
<div id="content"> Default content </div>
<div id="footer"> Default footer </div>
</ di v>

10.11.2. Parent component

This component provides the common features of our page layout, including header and footer, but
does not specify any content. The missing @DataField "content" will be provided by the individual
page components extending from this parent component.

@enpl at ed
public cl ass PagelLayout extends Conposite {

@ nj ect
@at aFi el d
private Header Conponent header;

@ nj ect
@at aFi el d
private Footer Conponent footer;

@ ost Const ruct

public final void init() {
/1 do sone setup

10.11.3. Child component

We are free to fill in the missing "content" @DataField with a Widget of our choosing. Note that it
is not required to fill in all omitted @DataField references.

143

Chapter 10. Errai Ul

@renpl at ed(" PageLayout . htm ")
public class Logi nLayout extends PagelLayout {

@ nj ect
@at aFi el d
private Logi nForm content;

We could also have chosen to override one or more @at aFi el d references defined in the parent
component, simply by specifying a @at aFi el d with the same name in the child component, as
is done with the "footer" data field below.

@enpl at ed(" PageLayout . htm ")
public class Logi nLayout extends PagelLayout {

@ nj ect
@at aFi el d
private Logi nForm content;

/* COverride footer defined in PageLayout */
@ nj ect

@at aFi el d

private Custonfooter footer;

10.12. Stylesheet binding

When developing moderately-complex web applications with Errai, you may find yourself needing
to do quite a bit of programmatic style changes. One common case is showing or enabling controls
only if a user has the necessary permissions to use them. One part of the problem is securing
those features from being used, and the other part which is an important usability consideration
is communicating that state to the user.

@ RestrictedAccess in Errai Security

Errai Security contains a Restrict edAccess annotation that uses style sheet
binding to implement a feature similar in nature to this example.

Let’s start with the example case | just described. We have a control that we only want to be visible
if the user is an admin. So the first thing we do is create a style binding annotation.

144

Stylesheet binding

@5t yl eBi ndi ng
@Ret enti on(Ret enti onPol i cy. RUNTI ME)
public @nterface Admin {

}

This defines Adni n as a stylebinding now we can use it like this:

@nt r yPoi nt

@enpl at ed

public class Hell oWwrl dFor m ext ends Conposite {
@nject @dmn @ataField Button del et eButton;
@ nj ect Sessi onManager sessi onManager;

@vent Handl er (" del et eButt on")
private void handl eSendd i ck(C i ckEvent event) {
/1 do sone del eting!

@\dm n
private void appl yAdmi nStyling(Style style) {
if (!sessionManager.isAdmn()) {
style.setVisibility(Style.Visibility.H DDEN);

Now before the form is shown to the user the appl yAdmi nSt yl i ng method will be executed where
the sessi onManager is queried to see if the user is an admin if not the delete button that is also
annotated with @dni n will be hidden from the view.

The above example took at St yl e object as a parameter, but it is also possible to use an El enent .
So the appl yAdni nSt yl i ng method above could have also been written like this:

@\dm n
private void appl yAdm nStyling(El emrent el enent) {
i f (!sessionManager.isAdmn()) {
el ement . addd assNane(" di sabl ed") ;

The CSS class "disabled" could apply the same style as before ("visibility: hidden") or it could
have more complex behaviour that is dependent on the element type.

145

Chapter 10. Errai Ul

10.12.1. Usage with Data Binding

In addition when using this in conjunction with Errai Databinding. Any Errai Ul component which
uses @AutoBound, will get live updating of the style rules for free, anytime the model changes.
Allowing dynamic styling based on user input and other state changes.

10.13. Internationalization (i18n)

User interfaces often need to be available in multiple languages. To get started with Errai's
internationalization support, simply put the @undl e("bundl e. j son") annotation on your entry
point and add an empty bundl e. j son file to your classpath (e.g. to src/main/java or src/main/
resources). Of course, you can name it differently.

Errai will scan your HTML templates and process all text elements to generate key/value pairs
for translation. It will generate a file called errai - bundl e-al | . j son and put it in your . err ai
directory. You can copy this generated file and use it as a starting point for your custom translation
bundles. If the text value is longer than 128 characters the key will get cut off and a hash appended
at the end.

The translation bundle files use the same naming scheme as Java (e.g. bundl e_nl _BE. j son
for Belgian Dutch and bundl e_nl . j son for plain Dutch). Errai will also generate a file called
errai -bundl e- i ssing. json in the . errai folder containing all template values for which no
translations have been defined. You can copy the key/value pairs out of this file to create our own
translations:

{

"StoresPage. Stores!" : "Stores!",

"Wl conePage. As_you_npve_toward_a_nore_and_nore_decl arative_style, _you_al |l ow Afie_conpil er _and_t
you nove toward a nore and nore decl arative style, you allowthe conpiler and t he

framework to catch nore m stakes up front. Broken |links? A thing of the past!”

}

If you want to use your own keys instead of these generated ones you can specify them in your
templates using the dat a-i 18n- key attribute:

<htnml >
<body>

<di v id="content">

<p data-i18n-key="wel come">Wel come to errai-ui i18n.</p>
<di v>

By adding this attribute in the template you can translate it with the following:

146

Internationalization (i18n)

"W dget.wel cone": "WII| komren bei Errai-ui i18n."

Because your templates are designer templates and can contain some mock data that doesn’t
need to be translated, Errai has the ability to indicate that with an attribute dat a- r ol e=dumy :

<di v id=navbar dat a-rol e=dunmy>
<di v cl ass="navbar navbar-fixed-top">
<di v cl ass=navbar-inner>
<di v cl ass=cont ai ner >
Exanpl e Navbar </ span>
<ul cl ass=nav>
<a>ltenx/a>
<a>ltenx/a>
</ ul >
</ di v>
</ di v>
</ di v>
</ di v>

Here the template fills out a navbar with dummy elements, useful for creating a design, adding
dat a- r ol e=dunmy will not only exclude it form being translated it will also strip the children nodes
from the template that will be used by the application.

When you have setup a translation of your application Errai will look at the browser locale and
select the locale, if it's available, if not it will use the default (bundl e. j son). If the users of your
application need to be able to switch the language manually, Errai offers a pre build component
you can easily add to your page: Local eLi st Box will render a Listbox with all available languages.
If you want more control of what this language selector looks like there is also a Local eSel ect or
that you can use to query and select the locale for example:

@enpl at ed
public class NavBar extends Conposite {

@ nj ect
private Local eSel ector sel ector;

@ nj ect @ataField @rderedLi st
Li st Wdget <Local e, Languagelten> | anguage;

@fterlnitialization
public void buil dLangaugelLi st () {
| anguage. set | tenms(new ArraylLi st<Local e>(sel ector. get SupportedLocal es()));

147

Chapter 10. Errai Ul

/1 in Languageltem we add a click handler on a |ink

@ nj ect
Navi gati on navi gati on;

@ nj ect
private Local eSel ector sel ector;

I i nk. addd i ckHandl er (new C i ckHandl er () {

@verride
public void ondick(dickEvent event) {
sel ector. sel ect (nodel . get Local e());
navi gati on. goTo(navi gati on. get Current Page() . nane());

1),

10.14. Extended styling with LESS

Errai also supports LESS [http://lesscss.org] stylesheets. To get started using these you'll have
to create a LESS stylesheet and place it on the classpath of your project. Errai will convert the
LESS stylesheet to css preform optimisations on it and ensure that is get injected into the pages
of your application. It will also obfuscate the class selectors and replace the use of those in your
templates. To be able to use the selectors in your code you can use:

public class MyConponent extends Conponent {
@ nj ect
private LessStyle | essStyle;

@ost Create
private void init() {
t ext Box. set Styl eNane(| essStyl e. get ("i nput”));

Finally it will also add any deferred binding properties to the top of your LESS stylesheet, so for
example you could use the user.agent in LESS like this:

.mxin (@) when (@ = "safari") {
background-col or: bl ack;

148

http://lesscss.org
http://lesscss.org

Extended styling with LESS

.mxin (@) when (@ = "geckol 8") {
background-col or: white;

.classl { .mxin(@ser_agent) }

Because a dot is not allowed in LESS variables it's replaced with an underscore, so in the example
above classl will have a black background on Safari and Chrome and white on Firefox. On the
top of this LESS stylesheet @user_agent: "safari" will get generated.

149

150

Chapter 11.

Errai Ul Navigation

Starting in version 2.1, Errai offers a system for creating applications that have multiple
bookmarkable pages. This navigation system has the following features:

Declarative, statically-analyzable configuration of pages and links

« Compile time referential safety (i.e. “no broken links”)

» Generates a storyboard of the application’s navigation flow at compile time

» Decentralized configuration

« Create a new page by creating a new annotated class. No need to edit a second file.

» Make navigational changes in the natural place in the code.

* Integrates cleanly with Errai Ul templates, but also works well with other view technologies.

¢ Builds on Errai l1oC & CDI

11.1. Getting Started

ﬁ Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai
Navigation to follow along with this section.

Manual Setup Section

11.2. How it Works

Errai Navigation has these main parts:

» The @age annotation marks any widget as a page.

e The TransitionTo<P>, TransitionAnchor<P>, and TransitionToRol e<R> classes are
injectable types that provide links to other pages.

» The Navi gat i on singleton offers control over the navigation system as a whole.

151

Chapter 11. Errai Ul Navigation

The Navi gat i on singleton owns a GWT Panel called the navigation panel . This panel always
contains a widget corresponding to the the fragment ID (the part after the # symbol) in the
browser’s location bar. Whenever the fragment ID changes for any reason (for example, because
the user pressed the back button, navigated to a bookmarked URL, or simply typed a fragment ID
by hand), the widget in the navigation panel is replaced by the widget associated with that fragment
ID. Likewise, when the application asks the navigation system to follow a link, the fragment ID in
the browser’s location bar is updated to reflect the new current page.

11.2.1. Declaring a Page

To declare a page, annotate any subclass of Widget with the @age annotation:

@rage
public class ItenlistPage extends Conposite {
/'l Anything goes. ..

By default, the name of a page is the simple name of the class that declares it. In the above
example, the It enLi st Page will fill the navigation panel whenever the browser’s location bar
ends with #1 t enlLi st Page. If you prefer a different page name, use the @age annotation’s pat h
attribute:

@age(path="itens")
public class ItenLi st Page extends Conposite {
/'l Anything goes. ..

Navigation and Errai Ul

Any widget can be a page. This includes Errai Ul @enpl at ed classes! Simply
annotate any Errai Ul templated class with @age, and it will become a page that
can be navigated to.

11.2.1.1. The Default (Starting) Page

Each application must have exactly one default page. This requirement is enforced at compile
time. This default page is displayed when there is no fragment ID present in the browser’s location
bar.

Use the rol e = Def aul t Page. cl ass attribute to declare the default starting page, like this:

@Page(rol e = Defaul t Page. cl ass)

152

Page Lifecycle

public class Wl comePage extends Conposite {
/1l Anyt hing goes. ..

Pages are looked up as CDI beans, so you can inject other CDI beans into fields or a constructor.
Pages can also have @Post Const ruct and @r eDest r oy CDI methods.

11.2.1.2. Page Roles

Def aul t Page is just one example of a page role. A page role is simply an interface used to mark
@vage types. The main uses for page roles:

« Using the Navi gat i on singleton, you can look up all pages that have a specific role.

 If a role is unique (as is the case with Def aul t Page) then it should extend Uni quePageRol e,
making it possible to navigate to the page by its role.

11.2.2. Page Lifecycle

There are four annotations related to page lifecycle events: @ageShow ng, @ageShown,
@ageHi di ng, and @ageHi dden. These annotations designate methods so a page widget can be
notified when it is displayed or hidden:

@age
public class ItenPage extends Vertical Panel {

@ageShow ng
private void preparePage() {

}

@rageHi di ng

private void unpreparePage() {
}

/1 Anyt hing goes...

11.2.2.1. Lifecycle Phases

1. The fragment identifier in the URL changes
2. The @ageHi di ng method on the current (about-to-be-navigated-away-from) page is invoked

3. The current page is removed from the browser's DOM

153

Chapter 11. Errai Ul Navigation

4. The @ageH dden method on the just-removed page is invoked

5. The navigation system looks up the corresponding @age bean in the client-side bean manager
(we'll call this bean "the new page")

6. The navigation system writes to all @agesSt at e fields in the new page bean (more on this in
the next section)

7. The @ageShowi ng method of the new page is invoked
8. The new page widget is added to the DOM (as a direct child of the navigation content panel)

9. The @ageShown method of the new page is invoked.
11.2.2.2. Optional Parameters

The @ageShowi ng and @ageShown methods are permitted one optional parameter of type
Hi st or yToken — more on this in the next section.

The @ageH di ng method is also permitted one optional parameter of type Navi gati onContr ol .
If the parameter is present, the page navigation will not be carried out until
Navi gat i onCont rol . proceed() is invoked. This is useful for interrupting page navigations and
then resuming at a later time (for example, to prompt the user to save their work before transitioning
to a new page).

11.2.2.3. Page Instance Lifespan

The lifespan of a Page instance is governed by CDI scope: Dependent and implict-scoped
page beans are instantiated each time the user navigates to them, whereas Singleton and
ApplicationScoped beans are created only once over the lifetime of the application. If a particular
page is slow to appear because its Ul takes a lot of effort to build, try marking it as a singleton.

11.2.3. Page State Parameters

A page widget will often represent a view on on instance of a class of things. For example, there
might be an ItemPage that displays a particular item available at a store. In cases like this, it's
important that the bookmarkable navigation URL includes not only the name of the page but also
an identifier for the particular item being displayed.

This is where page state parameters come in. Consider the following page widget:
@rage
public class ItemPage extends Vertical Panel {

@rageSt at e
private int itemd;

154

Declaring a Link with TransitionAnchor

/1 Anyt hing goes. ..

This page would be reachable at a URL like http://ww.conmpany.conl store/
#l t enPage; i t eml d=4. Before the page was displayed, the Errai Ul Navigation framework would
write the i nt value 4 into the i t em d field.

There are three ways to pass state information to a page: by passing a Multimap to
Transi tionTo. go() ; by passing a Multimap to Navi gati on. goTo() , or by including the state
information in the fragment identifier of a hyperlink as illustrated in the previous paragraph (use
the Hi st or yToken class to construct such a fragment ID properly.)

A page widget can have any number of @ageSt at e fields. The fields can be of any primitive or
boxed primitive type (except char or Character), String, or a Col | ecti on, Li st, or Set of the
allowable scalar types. Nested collections are not supported.

@ageSt at e fields can be private, protected, default access, or public. They are always updated
by direct field access; never via a setter method. The updates occur just before the @ageShowi ng
method is invoked.

In addition to receiving page state information via direct writes to @ageSt at e fields, you can also
receive the whole Multimap in the @ageShow ng and @ageShown methods through a parameter
of type H st or yToken . Whether or not a lifecycle method has such a parameter, the @ageSt at e
fields will still be written as usual.

Page state values are represented in the URL much like HTML form parameters: as key=value
pairs separated by the ampersand (&) character. Multi-valued page state fields are represented
by repeated occurrences of the same key. If a key corresponding to a @ageSt at e field is absent
from the state information passed to the page, the framework writes a default value: nul | for scalar
Object fields, the JVM default (O or false) for primitives, and an empty collection for collection-
valued fields. To construct and parse state tokens programmatically, use the Hi st or yToken class.

11.2.4. Declaring a Link with TransitionAnchor

The easiest way to declare a link between pages is to inject an instance of Tr ansi t i onAnchor <P>,
where P is the class of the target page.

Here is an example declaring an anchor link from the templated welcome page to the item list
page. The first code sample would go in WelcomePage.java while the second would go in the
WelcomePage.html, the associated html template.

@age(rol e = Def aul t Page. cl ass)
@enpl at ed
public class Wl comePage extends Conposite {

@nject @ataField TransitionAnchor<ltenlistPage> itenlink;

155

Chapter 11. Errai Ul Navigation

<di v>
<a data-field="itenLink">Go to Item List Page
</ di v>

You can inject any number of links into a page. The only restriction is that the target of the link must
be a Widget type that is annotated with @age . When the user clicks the link Errai will transition
to the item list page.

11.2.5. Declaring a Manual Link

Sometimes it is necessary to manually transition between pages (such as in response to an
event being fired). To declare a manual link from one page to another, inject an instance of
Transi ti onTo<P>, where P is the class of the target page.

This code declares a manual transition from the welcome page to the item list page:

@age(rol e = Def aul t Page. cl ass)
public class Wl comePage extends Conposite {

@nject TransitionTo<ltenlistPage> startButtond i cked,;

You do not need to implement the Tr ansi ti onTo interface yourself; the framework creates the
appropriate instance for you.

As with Tr ansi ti onAnchor , the only restriction is that the target of the link must be a Widget type
that is annotated with @age .

11.2.6. Following a Manual Link
To follow a manual link, simply call the go() method on an injected Tr ansi ti onTo object. For

example:

@age(rol e = Def aul t Page. cl ass)
public class Wl comePage extends Conposite {

@nject TransitionTo<ltenlistPage> startButtonC icked;

public void onStartButtonPressed(C ickEvent e) {

156

Declaring a Link By UniqguePageRole

startButtond i cked. go();

11.2.7. Declaring a Link By UniquePageRole

For convenience, it is also possible to transition to a page by its role using an injected
Transi ti onToRol e<R> where R is an interface extending Uni quePageRol e. This type is used
exactly as the Tr ansi ti onTo: just inject a parameterized instance and invoke the go() method.

By injecting a Tr ansi t i onToRol e into a @age, Errai will verify the existence of a single page with
this role at compile-time.

11.2.8. Installing the Navigation Panel into the User Interface

Beginning in version 2.4, Errai will automatically attach the Navigation Panel to the Root Panel,
but it is possible to override this behaviour by simply adding the Navigation Panel to another
component manually. The best time to do this is during application startup, for example in the
@ost Const ruct method of your @nt ryPoi nt class. By using the default behaviour you can
allow Errai Navigation to control the full contents of the page, or you can opt to keep some parts
of the page (headers, footers, and sidebars, for example) away from Errai Navigation by choosing
an alternate location for the Navigation Panel.

The following example reserves space for header and footer content that is not affected by the
navigation system:

@nt r yPoi nt
public class Bootstrap {

@ nj ect
private Navigati on navigation;

@ost Const ruct

public void clientMin() {
Vertical Panel vp = new Verti cal Panel ();
vp. add(new Header Wdget ());
vp. add(navi gati on. get Cont ent Panel ());
vp. add(new Foot er Wdget ());

Root Panel . get (). add(vp);

This last example demonstrates a simple approach to defining the page structure with an Errai
Ul template. The final product is identical to the above example, but in this case the overall

157

Chapter 11. Errai Ul Navigation

page structure is declared in an HTML template rather than being defined programmatically in
procedural logic:

@enpl at ed
@nt r yPoi nt
public class Overal |l PageStrucutre extends Conposite {

@ nj ect
private Navigation navigation;

@nject @ataField
private Header W dget header;

@nject @ataField
private Sinpl ePanel content;

@nject @ataField
private Footer W dget footer;

@Post Construct
public void clientMin() {

/1 give over the contents of this.content to the navigation panel
cont ent . add(navi gati on. get Cont ent Panel ());

/] add this whole tenplated wi dget to the root panel
Root Panel . get (). add(t hi s);

11.2.9. Overriding the default Nagivating Panel type

By default Errai uses com googl e. gwt . user.client. ui.Sinpl ePanel as a container for
navigation panel. Sometimes this is not sufficient and users would prefer using another
implementation. For example a com googl e. gwt . user. client. ui. Si npl eLayout Panel that
manages child size state.

To provide your own implementation of the navigation panel you must implement
org.jboss.errai.ui.nav.client.!|ocal.NavigatingContainer.For example:
public class NavigatingPanel inplenments NavigatingContainer {

Si npl ePanel panel = new Si npl eLayout Panel () ;

public void clear() {

158

Handling Navigation Errors

this. panel .clear();

public Wdget asWdget () {
return panel.asWdget();

public Wdget getWdget() {
return panel.getWdget();

public void set Wdget (W dget chil dWdget) {
panel . add(chi | dW dget) ;

public void set Wdget (| sWdget chil dWdget) {
panel . add(chi | dW dget);

Then in your GWT module descriptor you need to override the default navigation panel (
org.jboss. errai.ui.nav.client.local.Navi gati ngCont ai ner) by adding:

<replace-wi th class="com conpany. appl i cation.client. Navi gati ngPanel ">

<when-t ype-
is class="org.jboss.errai.ui.nav.client.|ocal.NavigatingContainer"/>
</repl ace-wit h>

11.2.10. Handling Navigation Errors

When a user enters a url for an Errai page that does not exist an error is logged and the app
navigates to the Def aul t Page. It is possible to override this behaviour by setting an error handler
on Navi gati on.

Here is an example of a class that registers a navigation error handler that redirects the user to
a special PageNot Found page:
@\ppl i cati onScoped

public class NavigationErrorHandl erSetter {

@ nj ect
private Navigati on navigation;

@Post Construct

159

Chapter 11. Errai Ul Navigation

public void setErrorHandl er() {
navi gati on. set Err or Handl er (new PageNavi gati onError Handl er () {

@verride
public void handl eError (Excepti on exception, String pageNanme) {
navi gati on. goTo(" PageNot Found") ;

@verride

public void handl eError (Exception exception, C ass<? extends PageRol e> pageRol e) { 9
navi gati on. goTo(" PageNot Found") ;

1)

©® Note that this method signature is for errors that occur from calls to
Navi gat i on. goToW t hRol e(O ass<? extends Uni quePageRol e>). These kinds of errors
can be avoided at compile-time by injecting Tr ansi t i onToRol e instances into your @age
classes instead of directly calling that method.

11.2.11. Viewing the Generated Navigation Graph

Because the pages and links in an Errai Navigation application are declared structurally, the
framework gets a complete picture of the app’s navigation structure at compile time. This
knowledge is saved out during compilation (and at page reload when in Dev Mode) to the file
.errai/navgraph. gv . You can view the navigation graph using any tool that understands the
GraphViz (also known as DOT) file format.

One popular open source tool that can display GraphViz/DOT files is GraphViz [http://
www.graphviz.org/] . Free downloads are available for all major operating systems.

When rendered, a navigation graph looks like this:

Figure 11.1. Navigation Graph

In the rendered graph, the pages are nodes (text surrounded by an ellipse). The starting page is
drawn with a heavier stroke. The links are drawn as arrows from one page to another. The labels
on these arrows come from the Java field names the TransitionTo objects were injected into.

160

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/

Chapter 12.

Errai Cordova (Mobile Support)

Starting with version 2.4.0, Errai now supports mobile development. One of the modules that
makes this feasible is the Cordova module. It offers a way to integrate with native hardware in
an Errai way.

w Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai Cordova
to follow along with this section.

Manual Setup Section

12.1. Integrate with native hardware

When the Cordova module is included you can integrate with native hardware by injecting the
native components into your code:

@enpl at ed(" #mai n")

public class KitchenSi nkClient extends Conposite {
@ nj ect
Canera caner a;

@ nj ect
@at aFi el d
Button t akePi cture;

@vent Handl er ("t akePi cture")

public void onTakePi cktured icked(d i ckEvent event) {
Pi ctureOptions options = new PictureQOptions(25);
options. set Desti nati onType(Pi ctureOpti ons. DESTI NATI ON_TYPE_DATA URL) ;
opti ons. set Sour ceType(Pi ct ureOpti ons. Pl CTURE_SOURCE_TYPE_CAMERA) ;

canera. get Picture(options, new PictureCall back() {

@verride
public void onSuccess(String data) {
i mage.setUrl (Ui lWils.fronSafeConstant("data:inage/]jpeg; base64," + data));

}

161

Chapter 12. Errai Cordova (Mo...

@verride
public void onFailure(String error) {

set Gener al Error Message("Coul d not take picture: " + error);
}

1)

The components that are supported come from the gwt-phonegap [https://code.google.com/p/
gwt-phonegap/] project have a look there form more documentation.

Here are the native hardware components you can inject:

e Camera

* Accelerometer

« Contacts

» Capture (Provides access to the audio, image, and video capture capabilities of the device).
e Compass

* Notification (see documentation on phonegap site [http://docs.phonegap.com/en/edge/
cordova_notification_notification.md.html#Notification])

* File create a native file

» Device Get general information about the device.

So to integrate with these things all we have to do is @ nj ect these classes. There are also a
couple of CDI events one can observe to be informed about hardware state:
» BackButtonEvent

 BatteryCriticalEvent

» BatteryEvent

» BatteryLowEvent

« BatteryStatusEvent

« EndCallButtonEvent

¢ MenuButtonEvent

» OffLineEvent

¢ OnlineEvent

162

https://code.google.com/p/gwt-phonegap/
https://code.google.com/p/gwt-phonegap/
https://code.google.com/p/gwt-phonegap/
http://docs.phonegap.com/en/edge/cordova_notification_notification.md.html#Notification
http://docs.phonegap.com/en/edge/cordova_notification_notification.md.html#Notification
http://docs.phonegap.com/en/edge/cordova_notification_notification.md.html#Notification

Integrate with native hardware

» PauseEvent

* ResumeEvent

» SearchButtonEvent
 StartCallButtonEvent

* VolumeDownButtonEvent
* VolumeUpButtonEvent

Example of how to use these events:

private void batteryl sLom @bserves BatteryLowEvent event) {
[/ m ssion acconplished. we can stop the infinite | oop now.

163

164

Chapter 13.

Errai Security

Errai Security provides a lightweight security API for declaring RPC services and client-side Ul
elements which require authentication or authorization.

ﬁ Plugin Tip

Use the Errai Forge Addon Add Errai Features command and select Errai Security
to follow along with this section.

Manual Setup Section

13.1. Basic Model

Errai Security provides two main concepts:

* Users
« A User corresponds to a single person.
« Itis usually associated with a username, full name, and email address.
* Roles
« A Role represents a priveleged group within your system.
» A User can have several roles, and a role can be had by many users.
¢ Roles are the primary way of defining authorization in Errai Security.

By default the server-side Errai Security module uses PicketLink [http://www.picketlink.org/] for
authentication. Later on we will explain how to use an alternative backend.

13.2. Getting Started

13.2.1. Making Users

The simplest way to begin experimenting with Errai Security is to add Users and Roles to
PicketLink programmatically. Here is some sample server-side code from the Errai Security
Demo [https://github.com/errai/errai/blob/master/errai-demos/errai-security-demo/src/main/java/
org/jboss/errai/security/demo/server/PicketLinkDefaultUsers.java].

165

http://www.picketlink.org/
http://www.picketlink.org/
https://github.com/errai/errai/blob/master/errai-demos/errai-security-demo/src/main/java/org/jboss/errai/security/demo/server/PicketLinkDefaultUsers.java
https://github.com/errai/errai/blob/master/errai-demos/errai-security-demo/src/main/java/org/jboss/errai/security/demo/server/PicketLinkDefaultUsers.java
https://github.com/errai/errai/blob/master/errai-demos/errai-security-demo/src/main/java/org/jboss/errai/security/demo/server/PicketLinkDefaultUsers.java
https://github.com/errai/errai/blob/master/errai-demos/errai-security-demo/src/main/java/org/jboss/errai/security/demo/server/PicketLinkDefaultUsers.java

Chapter 13. Errai Security

@i ngl et on
@t art up
public class PicketLinkDefaultUsers {

@ nj ect

private PartitionManager partitionManager; AL

| **
* <p>Loads sone users during the first construction.</p>
*/
@ost Const ruct
public void create() {
final ldentityManager identityManager = partitionManager. createl dentityManager();
final Relationshi pManager rel ati onshi pManager = partiti onManager. creat eRel ati onshi pManager (

User john = new User("john");

john.set Emai | ("j ohn@loe. cont');
j ohn. set Fi r st Nane(" John") ;
j ohn. set Last Nane(" Doe") ;

User hacker = new User("hacker");

hacker. set Emai | ("hacker@I1egal .ru");
hacker. set Fi r st Nane(" Hacker");
hacker . set Last Name(" anonynous") ;

i denti t yManager . add(j ohn); 2

i denti t yManager . add(hacker);

final Password defaul t Password = new Password("123");

i denti t yManager . updat eCredenti al (j ohn, defaul t Password);

i denti t yManager . updat eCr edenti al (hacker, defaul t Password);

Rol e rol eDevel oper = new Rol e("sinmple");
Rol e rol eAdmin = new Rol e("adnmin");

i dent it yManager . add(r ol eDevel oper);
i dentit yManager . add(r ol eAdni n);

rel ati onshi pManager . add(new G- ant (j ohn, rol eDevel oper)); 3]
rel ati onshi pManager . add(new G ant (j ohn, rol eAdnin));

Here are the important things that are happening here:

166

Authentication from the Client

PicketLink uses the concept of partitions, which are sections that can contain different users
and roles. What we really need to make users and roles are the I dentityManager and
Rel ati onshi pManager , but these objects are @Request Scoped so in order to access them
when the application starts we must @ nj ect the Partiti onManager .

A Herewe add are new users to the | dent i t yManager . Itis also used below to give passwords
to the new users, and to add the simple and admin roles.

© The Rel ati onshi pManager defines relationships between entities. In this case, it is used to
specify that a user belongs to a role.

13.2.2. Authentication from the Client

Once you've created some users and roles, you're ready to
write some client-side code. Authentication is performed with the
org.jboss.errai.security.shared. service. Aut henti cati onServi ce via Errai RPC.

Here is some sample code involving the user john from the previous Security Demo excerpt.

* Injecting the Cal | er <Aut hent i cati onSer vi ce>:

@nj ect Caller<AuthenticationService> authServiceCaller;

e Logging in:

aut hServi ceCal |l er. cal | (new Renot eCal | back<User>() {

@verride
public void callback(User user) {
/'l handl e successful |ogin

}
}, new ErrorCal | back<Message>() ({

@verride

public bool ean error(Message nmessage, Throwable t) {
if (t instanceof AuthenticationException) {
/'l handl e authentication failure

/1l Returning true causes the error to propogate to top-Ievel handlers
return true;

}
}).login("john", "123");

» Getting the currently authenticated User:

aut hServi ceCal |l er. cal |l (new Renot eCal | back<User >() {

167

Chapter 13. Errai Security

@verride
public void call back(User user) {
if (luser.equal s(User. ANONYMOUS)) ({
/1 Do sonething because we're | ogged in.
}
el se {
/1 Do sonething el se because we're not |ogged in.

}
}). getUser();

» Logging out:

aut hServiceCal ler.call ().l ogout();

13.3. RestrictedAccess

The annotation @Rest ri ct edAccess is the only annotation necessary to secure a resource or Ul
element. In general, @Rest ri ct edAccess blocks a resource from users who are not logged in;
if an array of roles are passed in, users without the declared roles are prevented access to the
annotated resource. Below we will explain how different resources are blocked from unauthorized
users.

13.3.1. RPC Services

To secure an Errai RPC service, simply annotate the RPC interface (either the entire type or just
a method) with one of the security annotations.

For example:

« All methods on this interface require an authenticated user to access:

@Renvot e

@RestrictedAccess

public interface UserOnlyStuff {
public void someMet hod();

168

RPC Services

public void otherMthod();

» Here the first method requires an authenticated user, and the second requires a user with the
admin role:

@Renpt e

public interface M xedService {

@RestrictedAccess
public void userService();

@restrictedAccess(roles = {"adm n"})
public void adm nService();

13.3.1.1. Error Callbacks

When access to a secured RPC service is denied an Unaut henti cat edException or
Unaut hori zedExcept i on is thrown. This error is then transmitted back to the client, where it can
be caught with an Err or Cal | back (provided when the RPC is invoked).

Here is how we would invoke the previous M xedSer vi ce example with error handling:

MessageBui | der . creat eCal | (new Renot eCal | back<Voi d>() {

@verride

public void call back(Void response) {
Il

}

}, new ErrorcCal | back<Message>() { L1

@erride
publi ¢ bool ean error(Message nmessage, Throwable t) {
if (t instanceof UnauthenticatedException) {
/1 User is not |ogged in.
return fal se;
}
else if (t instanceof UnauthorizedException) {
/1 User is logged in but |acked sufficient roles.
return fal se;
}
el se {
/1 Some other error has happened. Let it propogate.
return true;

169

Chapter 13. Errai Security

}

}, M xedService.cl ass).adm nService();

€ ThisErrorCal | back is parameterized with the type Message because it is an Errai Bus RPC.
In the next section we will demonstrate the use of a JAX-RS RPC.

DefaultBusSecurityErrorCallback

Errai Security provides a default global Bus RPC handler that catches any thrown
Unaut hent i cat edExcepti on or Unaut hori zedExcepti on and navigates to the
page with the Logi nPage or Securi t yError role respectively.

13.3.1.2. JAX-RS RPC

JAX-RS RPCs are secured exactly as bus RPCs. Here is the first example from the previous
section, but converted to use JAX-RS instead of the Errai Bus.

@rat h("/rest-endpoi nt")
@Restrict edAccess
public interface UserOnlyStuff {

@rat h("/ sonme- net hod")

@ET
public void soneMet hod();

@rat h("/ ot her - net hod")

@ET
public void otherMethod();

There are two important differences when calling a secured JAX-RS RPC (in contrast to an Errai
Bus RPC):

* JAX-RS RPC calls wuse the RestErrorCallback (an interface extending
Error Cal | back<Request >).

* There is now global error-handling for JAX-RS.

Because there is no global error-handling, you should always pass a Rest Er r or Cal | back when
using a JAX-RS RPC. Errai provides the Def aul t Rest Securi tyError Cal | back that provides
the same default behaviour as the Def aul t BusSecuri t yEr r or Cal | back mentioned above. It can
also optionally wrap a provided callback as demonstrated below:

* Injecting a callback | nst ance:

170

Page Navigation

@ nj ect
private |nstance<Def aul t Rest SecurityErrorCal | back> defaul t Cal | backl nst ance;

» Wrapping a custom callback in a default callback:

voi d cal | SoneService() {
user Onl ySt uf f Servi ce. cal | (new Renot eCal | back<Voi d>() {

@verride

public void call back(Void response) {
/1 Handl e success. ..

}
}, default Cal |l backl nstance. get ()
. set WappedError Cal | back(new Rest Error Cal | back() {

@verride
publi c bool ean error(Request request, Throwable t) {

// Handle error...

/1 Returning true neans the default navigation behaviour will occur

return true,;

}
)) . soneMet hod() ;

* Using the default callback without a wrapped callback:

voi d cal | SoneService() {
user Onl ySt uf f Servi ce. cal | (new Renot eCal | back<Voi d>() {

@verride
public void call back(Void response) {

/! Handl e success.. .

}
}, default Call backl nstance. get()).someMet hod() ;

13.3.2. Page Navigation

Any class annotated with @age can also be marked with @Rest ri ct edAccess. By doing so, users
will be prevented from navigating to the given page if they are not logged in or lack authorization.

Here are two simple examples:

171

Chapter 13. Errai Security

» This page is only for logged in users:

@rage
@RestrictedAccess
public class UserProfil ePage extends Sinpl ePanel {

@nject private Call er<AuthenticationServi ce> authServiceCaller;
private User user;

@ageShow ng
private void setupPage() {
aut hServi ceCal | er. cal | (new Renot eCal | back<User>() {
@verride
public void call back(User response) {
/1 We don't have to check if this is a valid user, since the page
requi res authentication.
user = response;
/1 do setup...

}
}). getUser();

* This page requires the user and admin roles:

@rage

@RestrictedAccess(roles = {"adm n", "user"})

public class Adm nManagenent Page ext ends Sinpl ePanel {
}

Redirection

When a user is denied access to a page they will be redirected to a Logi nPage

(@age(role = LoginPage.class)) or SecurityError (@age(role =
SecurityError.class)) page. To direct a user to the page they were trying
to reach after successful login, @ nj ect the SecurityCont ext and invoke the
navi gat eBackOr Home method.

13.3.2.1. Page Redirection and Caching

Security checks performed before page navigation do not use any RPC
calls, but are instead performed from a cached (in-memory) instance of the

172

Page Navigation

org.jboss.errai.security.shared. api.identity.User. This prevents the possibility of
lengthy delays between page navigation while waiting for RPC return values.

But the drawback is that any attempts to navigate to a secured @age before the cache is populated
will result in redirection to the Logi nPage — even if the user is in fact logged in.

In practice, this is only likely to happen if a user starts an Errai app with a URL to a secure page
while still logged in on the server from a previous session.

One option offered by Errai is to persist the
org.jboss.errai.security.shared. api.identity. User objectina cookie. This can be done
by adding the following to Er r ai App. properti es:

errai.security.user_cooki e_enabl ed=true

With this option enabled the User will be persisted in a browser cookie, which is loaded quickly
enough to avoid the described navigation issue. This feature can also be used to allow an
application to work offline, or allow the server to log in a user on an initial page request.

User is stored in plain text

Theerrai.security. user_cooki e_enabl ed=t r ue setting causes the User to be
stored in plain text. That includes the following information:

The user’s login name.

The user’s full name.

The user’s email address.

The user’s security roles.

If you do not wish to use this feature you will likely want to handle this case in the @ageShowi ng
method of your Logi nPage. Here is an outline of what you might want to do:

@age(rol e = Logi nPage. cl ass)
@enpl at ed
public class Exanpl eLogi nPage extends Conposite {

@ nj ect
private SecurityContext securityContext;

@ nj ect
private Caller<AuthenticationService> authService;

@ nj ect

173

Chapter 13. Errai Security

@at aFi el d
private Label status;

@ageShow ng
public void checkFor Pendi ngCache() {
/1 Check if cache is invalid.
if (!securityContext.isUserCacheValid()) {
/1 Update the status.
status. set Text ("l oading...");

/'l Force cache to update by calling getUser
aut hServi ce. cal | (new Renot eCal | back<User > {

@verride
public void callback(User user) {
/* An interceptor will have updated the cache by now.

So check if we are logged in and redirect if necessary.
*/
if (!user.equal s(User. ANONYMOUS)) {
[* This is a special transition that takes us back to
a secure page fromwhich we were redirected. */
securityCont ext . navi gat eBackOr Hone() ;

}

el se {
status. set Text ("You are not |ogged in.");

}
}) . getUser();

13.3.3. Hiding Ul Elements

Errai Security annotations can also be used to hide Errai Ul template fields. When a user is not
logged in or lacks required roles the annotated field will have the CSS class "errai-restricted-
access-style" added to it. By defining this style (for example with vi si bility: none) you can
hide or otherwise modify the display of the element for unautorized users.

Here is an example of an Errai Ul templated class using this feature:
@enpl at ed
public class NavBar extends Conposite {

@ nj ect

@pat aFi el d
@Restrict edAccess

174

Using an Alternative to PicketLink

private Button | ogoutButton;

@ nj ect

@pat aFi el d

@RestrictedAccess(roles = {"adnin"})
private Button dropAl | Tabl esButt on;

13.4. Using an Alternative to PicketLink

All Errai Security authentication is implemented with Errai Remote Procedure Calls to the
Aut hent i cati onSer vi ce. A default implementation of this interface using PicketLink is provided
in the errai -security-picketlink jar. But it is possible to use a different sever-side security
framework by providing your own custom implementation of Aut henticationServi ce and
annotating it with @ser vi ce. In that case your project should not depend on errai - securi ty-
pi cketli nk.

13.4.1. Form Based Login

If you do enable the Errai Security cookie, it is possible to use a form-based login from outside
your GWT/Errai app. Here are the steps required:
1. Create a login page using an html form that posts to a Java servlet.

2. On the servlet attempt to login with the Aut henti cati onServi ce. If a user’s login request is
successful, usethe org. j boss. errai . security. shared. api . User Cooki eEncoder to create
a cookie.

3. Set the cookie in the HTTP response and redirect the user to your Errai app.

4. Make sure this is in your ErraiApp.properties file:
errai.security.user_cooki e_enabl ed=true

175

176

Chapter 14.

Logging

Errai now supports using the slf4j [http://www.slf4].org/] logging api on the server and client. This
gives you the flexibility of choosing your own logging back-end for your server-side code, while
still allowing a uniform logging interface that can be used in shared packages.

14.1. What is slf4j?

sl4jis logging abstraction. Using the slf4j api, you can add log statements to your code using a fixed
api while maintaining the ability to switch the logging implementation at run-time. For example,
the slif4j api can be used with java.util.logging (JUL) as the back-end.

14.2. Client-Side Setup

The client-side slf4j code uses the GWT Logging [http://www.gwtproject.org/doc/latest/
DevGuidelLogging.html] as the back-end. Using slf4j in client-side code has two steps:

1. Add the errai-common artifact as a maven dependency to your project

2. Inherit the gwt module or g. j boss. errai . conmon. Er r ai Conmon

14.2.1. Errai Client-Side Log Handlers

In the ErraiCommon module, we have disabled the built-in GWT log handlers and provided four
handlers of our own:

» ErraiSystemLogHandler : prints log statements to the terminal in Development Mode
« ErraiConsoleLogHandler : prints statements to the web console in the browser
 ErraiDevelopmentModelLogHandler : prints statements in the Development Mode window

» ErraiFirebugLogHandler : prints statements to the console in Firefox These loggers are all
enabled by default and set to handle all log levels.

14.2.2. Configuring Errai Client-Side Log Handlers

Log handler levels can be changed at run-time through Java or Javascript. To do so through Java,
use the Loggi ngHandl er Conf i gur at or in Errai Common. Here’s an example:

Example 14.1. HandlerLevelAdjuster.java
i mport org.jboss. errai.conmmon. client.|ogging. Loggi ngHandl er Confi gur at or;
i nport org.jboss.errai.common. client.logging. handl ers. Errai Syst enLogHandl er;

i mport java.util.logging.Level;

public class Handl er Level Adj uster {

177

http://www.slf4j.org/
http://www.slf4j.org/
http://www.gwtproject.org/doc/latest/DevGuideLogging.html
http://www.gwtproject.org/doc/latest/DevGuideLogging.html
http://www.gwtproject.org/doc/latest/DevGuideLogging.html

Chapter 14. Logging

public static void logAll () {
Loggi ngHandl er Confi gurator confi g = Loggi ngHandl er Confi gurator. get();
Errai Syst enLogHandl er handl er = confi g. get Handl er (Errai Syst emLogHandl er. cl ass) ;
handl er. set Level (Level . ALL);

public static void disabl eLoggi ng() {
Loggi ngHandl er Confi gurator config = Loggi ngHandl er Confi gurator.get();
Errai Syst enLogHandl er handl er = confi g. get Handl er (Errai Syst enLogHandl er. cl ass) ;
handl er . set Level (Level . OFF);

Each handler has a native Javascript variable associated with its log level:

Handler Variable Name

ErraiSystemLogHandler erraiSystemLogHandlerLevel
ErraiConsoleLogHandler erraiConsoleLogHandlerLevel
ErraiDevelopmentModeLogHandler erraiDevelopmentModelLogHandlerLevel
ErraiFirebugLogHandler erraiFirebugLogHandlerLevel

Since these are native Javascript variables, they can easily be set in a script tag on your host page:

<script type="text/javascript">

errai Syst enLoghandl er Level = "I NFO'
</scri pt>
The possible log levels correspond to those in j ava. util . | oggi ng. Level .

Logging Levels

If you are increasing the logging level of an Errai log handler, you will also need
to increase the gwt . | oggi ng. | ogLevel (set in your *.gwt.xml). Handlers will not
receive log records that are lower than the GWT log level, which is set to INFO in
Er r ai Conmon. gwt . xmi .

14.2.3. Format String

The Errai log handlers use Errai Si npl eFor matt er to format log output. The format string is
similar to that used in by j ava. uti | . Si npl eFormatt er (for precise differences please see the
javadocs for Errai Si npl eFor matt er and St ri ngFor nat).

178

Server-Side Setup

As with handler settings, these can be configured in Java or Javascript. To do so in Java, use
Errai Si npl eFor mmat er . set Si npl eFor mat Stri ng(String). In Javascript, just set the variable
errai Si npl eFor mat St ri ng to the desired value.

14.3. Server-Side Setup

On the server you are free to use any logging back-end that has slf4j bindings (or to make your
own). Just make sure to add dependencies for the slf4j-api artifact and the slf4j binding you
choose. Note: Some application servers provide their own slf4j bindings (such as JBoss AS), in
which case you should add your binding dependency as provided scope.

To learn more about how to setup slIf4j for your server-side code, see their website [http://
www.slf4j.org/].

14.4. Example Usage

Here is sample usage of the slf4j code (which with the above setup can be run on the client or
server):

Example 14.2. LogExample.java

i nport org.slf4j.Logger;
i mport org.slf4j.LoggerFactory;
i mport javax.inject.Inject;

public class LogExanple {
public void logStuff() {
/1 Get a logger for this class

@ nj ect Logger |ogger;

/1 Logging going fromnost to | east detail ed
| ogger.trace("this is extrenely specific!");

| ogger.debug("this is still pretty specific");
| ogger.info("this is an average | og nessage");
| ogger.warn("there might be sonething fishy here...");
| ogger.error("uh oh... abandon ship!", new Exception("l am a |ogged
exception"));

}

14.5. Logger Names

By default, the above example with provide a logger with the fully qualified class name of the
enclosing class. To inject a logger with an alternate name, use the NamedLogger annotation:

179

http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/

Chapter 14. Logging

Example 14.3. NamedLogExample.java

i mport org.slf4j.Logger;
i mport javax.inject.|nject;
i mport org.jboss. errai.conmmon. client.api.NanedLogger;

public class NamedLogExanpl e {

/'l Get a |logger with the name "Logger!"
@ nj ect @lanmedLogger ("Logger!") | ogger;

/1 CGet the root |ogger
@ nj ect @lanmedLogger root Logger;

180

Chapter 15.

Configuration

This section contains information on manually setting up Errai and describes additional
configurations and settings which may be adjusted.

15.1. Errai Development Mode Configuration

15.1.1. Deployment in Development Mode (JBossLauncher)

In development mode we need to bootstrap the CDI environment on our own and make both Errai
and CDI available through JNDI (common denominator across all runtimes). GWT by default uses
Jetty, that only supports read only JNDI. The current solution for this is to use a custom launcher
to control a JBoss AS 7 or Wildfly 8 instance instead of GWT’s built-in Jetty.

To do this, requires the following configurations in the gwt-maven-plugin configuration;

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifact!|d>gwt-maven-plugin</artifactld>
<version>${gwt . versi on} </ ver si on>

<configuration>

<extraJvmAr gs>-Derrai . boss. home=$JBOSS_HOVE -
Derrai . j boss. javaagent . pat h=${setti ngs. | ocal Reposi tory}/org/jboss/errai/errai-
client-1ocal-class-hider/$ERRAl _VERSI OV errai-client-1ocal-class-hider-
$ERRAI _VERSI ON. j ar </ ext raJvmAr gs>
<noSer ver >f al se</ noServer >
<server>org.j boss.errai.cdi.server.gw.JBossLauncher</server>
</ confi guration>
<executions>

</ executi ons>

</ pl ugi n>

What does all this mean?

e <noServer >f al se</ noSer ver>: Tells GWT to lauch a server for us.

e <server>org.jboss.errai.cdi.server.gw.JBossLauncher</server>: Tells GWT to use
a custom launcher instead of it's default JettyLauncher.

e <extraJvmArgs>...</extraJvmArgs>

181

Chapter 15. Configuration

e -Derrai.jboss. home=$JBOSS_HOVE: Tells the JBossLauncher the location of the JBoss or
Wildfly instance to use. Note that $JB0SS_HOVE should be replaced with a literal path (or pom
property) to a JBoss or Wildfly instance you have installed.

e -Derrai.jboss.javaagent. pat h=${settings. | ocal Repository}/org/jboss/errail/
errai-client-1local-class-hider/${ERRAl _VERSIO\}/errai-client-local-class-
hi der - ${ ERRAI _VERSI ON}. j ar: This scary looking line is necessary so that the JBoss
instance does not see client-only dependencies. Note that $ERRAI _VERSI ON should be
replaced with the literal version of Errai (or a pom property).

15.1.2. Additional JBossLauncher Arguments

Here are some additional JVM arguments that can be passed to the JBossLauncher:

e errai.dev. context: Sets the context under which your app will be deployed (defaults to
"webapp").

e errai.jboss. debug. port: Sets the port for debugging server-side code (defaults to 8001).

e errai.jboss.config.file:Setsthe configuration file (in $JBOSS_HOVE/ conf i gur at i on) used
by the JBoss/Wildfly instance (defaults to standalone-full.xml).

e errai.jboss.javaopts: Sets additional java opts used by the JVM running JBoss/Wildfly.

15.1.3. Deployment to an Application Server

We provide integration with the JBoss Application Server [http://jboss.org/jbossas], but the
requirements are basically the same for other vendors. When running a GWT client app that
leverages CDI beans on a Java EE 6 application server, CDI is already part of the container and
accessible through JNDI (j ava: / BeanManager).

15.2. ErraiApp.properties

ErraiApp.properties acts both as a marker file for JARs that contain Errai-enabled GWT modules,
and as a place to put configuration settings for those modules in the rare case that non-default
configuration is necessary.

15.2.1. As a Marker File

An Errai App. properti esfile must appear at the root of each classpath location that contains
an Errai module. The contents of JAR and directory classpath entries that do not contain an
Errai App. properti es are effectively invisible to Errai's classpath scanner.

15.2.2. As a Configuration File

ErraiApp.properties is usually left empty, but it can contain configuration settings for both the core
of Errai and any of its extensions. Configuration properties defined and used by Errai components

182

http://jboss.org/jbossas
http://jboss.org/jbossas

As a Configuration File

have keys that start with " errai . ". Third party extensions should each choose their own prefix
for keys in ErraiApp.properties.

15.2.2.1. Configuration Merging

In a non-trivial application, there will be several instances of ErraiApp.properties on the classpath
(one per JAR file that contains Errai modules, beans, or portable classes).

Before using the configuration information from ErraiApp.properties, Errai reads the contents of
every ErraiApp.properties on the classpath. The configuration information in all these files is
merged together to form one set of key=value pairs.

If the same key appears in more than one ErraiApp.properties file, only one of the values will be
associated with that key. The other values will be ignored. In future versions of Errai, this condition
may be made into an error. It's best to avoid specifying the same configuration key in multiple
ErraiApp.properties files.

15.2.2.2. Errai Marshalling Configuration

« errai.marshalling.use_static_marshallers when set to f al se, Errai will not use the precompiled
server-side marshallers even if the generated Ser ver Mar shal | i ngFact oryl npl class is found
on the classpath. This is useful when using Dev Mode in conjunction with an external server
such as JBoss AS 7 or EAP 6.

« errai.marshalling.force_static_marshallers when set to true, Errai will not use dynamic
marshallers. If the generated Server Mar shal | i ngFact oryl npl cannot be loaded (possibly
after an attempt to generate it on-the-fly), the Errai web app will fail to start.

Errai also supports configuring portable types in Err ai App. properti es as an alternative to the
@vor t abl e annotation. See the Errai Marshalling section on Manual Mapping for details.

15.2.2.3. Errai loC Configuration

« errai.ioc.QualifyingMetaDataFactory specifies the fully-qualified class name of the
QualifyingMetadataFactory implementation to use with Errai loC.

 errai.ioc.enabled.alternatives specifies a whitespace-separated list of fully-qualified class
names for alternative beans . See Alternatives and Mocks for details.

 errai.ioc.async_bean_manager a boolean property that when set to true (defaults to false)
will activate asynchronous IOC to allow for code splitting [http://www.gwtproject.org/doc/
latest/DevGuideCodeSplitting.html]. The code of types annotated with @oadAsync will be
downloaded the first time it is needed. @.oadAsync also allows to specify a fragment name
using a class literal. Using GWT 2.6.0 or higher, all types with the same fragment name will be
part of the same split point.

« errai.ioc.blacklist specifies a whitespace-separated list of classes that should be hidden
from Errai IOC and that will be excluded when generating the bean graph and wiring

183

http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html
http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html
http://www.gwtproject.org/doc/latest/DevGuideCodeSplitting.html

Chapter 15. Configuration

components. Wildcards are supported to exclude all types underneath a package e.g.
org.jboss.myapp.exclude.* (all types under the exclude package will be hidden from ERRAI
I0C).

« errai.ioc.whitelist when this property is present all types in your application are hidden from Errai
IOC by default. It specifies a whitespace-separated list of classes that should be visible to IOC
and that will be included when generating the bean graph and wiring components. Wildcards are
supported to include all types underneath a package e.g. org.jpboss.myapp.include.* (all types
under the include package will be visible to ERRAI I0C).

15.3. Messaging (Errai Bus) Configuration

15.3.1. Compile-time Dependencies

The following compile-time dependency is required for Errai Messaging:

<dependency>
<groupl d>org. j boss. errai </ groupl d>
<artifactld>errai-bus</artifactld>
<version>${errai.version}</version>
</ dependency>

Or if you are not using Maven, have errai - bus- ${ errai . versi on}. j ar on the classpath.

If you are also using Errai IOC or Errai CDI and wish to use inject Errai Messaging dependencies,
you will also want this dependency:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-ioc-bus-support</artifactl!d>
<version>${errai.version}</version>

</ dependency>

Or if you are not using Maven, have errai -i oc- bus-support-${errai.version}.jar on the
classpath.

15.3.2. Disabling remote communication

In some cases it might be desirable to prevent the client bus from communicating with the server.
One use case for this is when all communication with the server is handled using JAX-RS and the
constant long polling requests for message exchange are not needed.

To turn off remote communication in the client bus the following JavaScript variable can be set
in the HTML host page:

184

Configuring an alternative remote remote bus endpoint

<script type="text/javascript">
err ai BusRenot eConmuni cati onEnabl ed = fal se;
</scri pt>

15.3.3. Configuring an alternative remote remote bus endpoint

By default the remote bus is expected at the GWT web application’s context path. In case the
remote bus is part of a different web application or deployed on a different server, the following
configuration can be used in the HTML host page to configure the remote bus endpoint used on
the client.

<script type="text/javascript">
errai BusApplicationRoot = "/ M/Renpt eMessageBusEnpoi nt";
</script>

15.3.4. ErraiService.properties

The ErraiService.properties file contains basic configuration for the bus itself. Unlike
ErraiApp.properties, there should be at most one ErraiService.properties file on the classpath of
a deployed application. If you do not need to set any properties to their non-default values, this
file can be omitted from the deployment entirely.

15.3.4.1. Message Dispatching

Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere
and seeing that they are delivered to where they need to go. There are two primary
implementations that are provided with Errai, depending on your needs.

SimpleDispatcher:

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.
Rather, when you configure the Errai to use this implementation, messages are delivered to their
endpoints synchronously. The incoming HTTP thread will be held open until the messages are
delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the
SimpleDispatcher can be far preferable when you're developing your application, as any errors
and stack traces will be far more easily traced and some cloud services may not permit the use
of threads in any case.

AsyncDispatcher:

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher
is used, HTTP threads will have control immediately returned upon dispatch of the message.

185

Chapter 15. Configuration

This dispatcher provides far more efficient use of resources in high-load applications, and will
significantly decrease memory and thread usage overall.

« errai.dispatcher.implementation specifies the dispatcher implementation to be used by the bus.
There are two implementations which come with Errai out of the box: the Si npl eDi spat cher
and the AsyncDi spat cher . See ERRAI:Dispatcher Implementations for more information about
the differences between the two.

15.3.4.2. Threading

« errai.async_thread_pool_size specifies the total number of worker threads in the worker pool
for handling and delivering messages. Adjusting this value does not have any effect if you are
using the SimpleDispatcher.

« errai.async.worker_timeout specifies the total amount of time (in seconds) that a service is given
to finish processing an incoming message before the pool interrupts the thread and returns an
error. Adjusting this value has no effect if you are using the SimpleDispatcher.

15.3.4.3. Buffering

 errai.bus.buffer_size The total size of the transmission buffer, in megabytes. If this
attribute is specified along with errai. bus. buf fer _segment _count , then the segment
count is inferred by the calculation buffer_segment_count / buffer_size}. |If
{{errai.bus. buf fer_segment _count is also defined, it will be ignored in the presence of this
property. Default value: 32.

« errai.bus.buffer_segment_size The transmission buffer segment size in bytes. This is the
minimum amount of memory each message will consume while stored within the buffer. Defualt
value: 8.

« errai.bus.buffer_segment_count The number of segments in absolute terms. If this attribute
is specified in the absence of errai . bus. buf fer_si ze , the buffer size is inferred by the
calculation buf f er _segnent _si ze / buffer_segnment count .

« errai.bus.buffer_allocation_mode Buffer allocation mode. Allowed values are di r ect and heap .
Direct allocation puts buffer memory outside of the JVM heap, while heap allocation uses buffer
memory inside the Java heap. For most situations, heap allocation is preferable. However, if
the application is data intensive and requires a substantially large buffer, it is preferable to use
a direct buffer. From a throughput perspective, current JVM implementations pay about a 20%
performance penalty for direct-allocated memory access. However, your application may show
better scaling characteristics with direct buffers. Benchmarking under real load conditions is
the only way to know the optimal setting for your use case and expected load. Default value:
direct .

15.3.4.4. Clustering

« errai.bus.enable_clustering A boolean indicating whether or not Errai’'s server side bus should
attempt to orchestrate with its peers. The orchestration mechanism is dependent on the

186

ErraiService.properties

configured clustering provider (e.g. UDP based multicast discovery in case of the default
JGroups provider). The default value is f al se .

* errai.bus.clustering_provider The fully qualified class name of
the clustering provider implementation. A class that implements
org.jboss.errai.bus.server.cluster.d usteringProvider . Currently the only build-in
provider is the
org.jboss.errai.bus.server.cluster.jgroups.JG oupsC usteringProvider .

15.3.4.5. Startup Configuration

 errai.auto_discover_services A boolean indicating whether or not the Errai bootstrapper should
automatically scan for services. This property must be set to true if and only if Errai CDI is not
on the classpath . The default value is f al se.

 errai.auto_load_extensions A boolean indicating whether or not the Errai bootstrapper should
automatically scan for extensions. The default value is t r ue.

15.3.4.6. Example Configuration

Hit

Request dispatcher inplenentation (default is SinpleD spatcher)

##

#errai . di spatcher _i npl enent ati on=or g. j boss. errai . bus. server. Si npl eDi spat cher
errai.di spatcher_i npl ement ati on=org. j boss. errai . bus. server. AsyncD spat cher

#

Worker pool size. This is the nunber of threads the asynchronous worker pool
shoul d provide for

processi ng

incom ng nmessages. This option is only valid when using the AsyncDi spatcher
i mpl enent ati on.

Hit

errai.async. t hread_pool _si ze=5

##t

Worker timeout (in seconds). This defines the time that a single asychronous
process may run,

bef ore the worker pool

termnates it and reclains the thread. This option is only valid when using
t he AsyncDi spat cher

i mpl ement ati on.

##t

errai.async. worker.timeout=5

187

Chapter 15. Configuration

15.3.5. Servlet Configuration

Errai has several different implementations for HTTP traffic to and from the bus. We provide a
universally-compatible blocking implementation that provides fully synchronous communication
to/from the server-side bus. Where this introduces scalability problems, we have implemented
many webserver-specific implementations that take advantage of the various proprietary APIs to
provide true asynchrony.

These included implementations are packaged at: or g. j boss. errai . bus. server. servl et .

One is Enough!

You should use just one of the options below. Configuring multiple ErraiServlet
implementations in the same application will lead to unpredictable behaviour!

Remember that all Errai demos and archetypes are preconfigured with
DefaultBlockingServlet as a servlet. You will need to remove this default setup if
you choose to use a different ErraiServlet implementation in your app.

@ Rolling your own security? Beware!

All of the following examples use a wildcard mapping for\ *. er r ai Bus with no path
prefix. This allows Errai Bus to communicate from any point in your application’s
URI hierarchy, which allows bus communication to work properly no matter where
you choose to put your GWT host page.

For example, all of the following are equivalent from Errai’s point of view:

e /in.erraiBus
» /foo/bar/in.erraiBus
 /long/path/to/get/to.erraiBus

If you rely on your own security rules or a custom security filter to control access
to Errai Bus (rather than the security framework within Errai Bus,) ensure you use
the same mapping pattern for that fi | t er - mappi ng or securi ty-constrai nt as
you do for the Errai Servlet itself.

15.3.5.1. DefaultBlockingServlet

This ErraiServlet implementation should work in virtually any servlet container that supports Java
Servlets 2.0 or higher. It provides purely synchronous request handling. The one scenario where
this servlet will not work is in servers that put restrictions on putting threads into sleep states.

188

Servlet Configuration

The default DefaultBlockingServiet which provides the HTTP-protocol gateway between the
server bus and the client buses.

As its name suggests, DefaultBlockingServlet is normally configured as an HTTP Servlet in the
web. xm file:

<servl| et >
<servl et - name>Err ai Servl et </ servl et - nane>
<servlet-class>org.]jboss. errai.bus. server.servl et. Def aul t Bl ocki ngServl et </
servl et-class>
<l oad- on-st art up>1</ | oad- on- st art up>
</servlet>

<servl et - mappi ng>
<servl et - nanme>Err ai Servl et </ servl et - nane>
<url -pattern>*.errai Bus</url -pattern>

</ servl et - mappi ng>

15.3.5.2. DefaultBlockingServlet configured as Filter

Alternatively, the DefaultBlockingServiet can be deployed as a Servlet Filter. This may be
necessary in cases where an existing filter is configured in the web application, and that filter
interferes with the Errai Bus requests. In this case, configuring DefaultBlockingServlet to handle
\ *. err ai Bus requests ahead of other filters in web.xml will solve the problem:

<filter>
<filter-name>Errai Servlet</filter-name>
<filter-class>org.]jboss. errai.bus. server.servlet. Defaul t Bl ocki ngServl et </
filter-class>
</filter>

<filter-mpping>
<filter-name>Errai Servlet</filter-nanme>
<url -pattern>*.errai Bus</url -pattern>
</filter-mappi ng>

15.3.5.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty’s continuations support, which allows for threadless
pausing of port connections. This servlet implementation should work without any special
configuration of Jetty.

<servl et >
<servl et - nane>Err ai Servl et </ servl et - nane>

189

Chapter 15. Configuration

<servlet-class>org.jboss. errai.bus.server.servlet.JettyContinuationsServlet</
servl et-cl ass>

<l oad- on- st art up>1</| oad-on-start up>
</servlet>

<servl et - mappi ng>
<servl et - nane>Err ai Servl et </ servl et - nane>
<url -pattern>*.errai Bus</url -pattern>

</ servl et - mappi ng>

15.3.5.4. StandardAsyncServlet

This implementation leverages asynchronous supportin Servlet 3.0 to allow for threadless pausing
of port connections. Note that <async- support ed>t r ue</ async- support ed> has to be added
to the servlet definition in web. xm .

<servl et >
<servl et - nane>Err ai Servl et </ servl et - nane>
<servl et-class>org.jboss. errai.bus. server.servl et. StandardAsyncServl et </
servl et-cl ass>
<l oad-on-startup>1</| oad- on- st art up>
<async- support ed>t rue</ async- supported>
</servlet>

<servl et - mappi ng>
<servl et - nane>Err ai Servl et </ servl et - nane>
<url -pattern>*.errai Bus</url -pattern>

</ servl et - mappi ng>

15.3.5.5. Automatic Service Discovery

By default Errai relies on a provided CDI container to do server-side service discovery. But if you
intend to use Errai Messaging without a CDI container, Errai can scan for services on its own if
the following initialization parameter is added to the servlet configuration:

<i ni t-paranp
<par am name>aut o- di scover - servi ces</ par am nane>
<par am val ue>t rue</ par am val ue>

</init-paranp

190

Errai JAX-RS Setup

A Warning

This configuration will cause issues (such as duplicate services) if it is set to true
and a server-side CDI container is available.

15.4. Errai JAX-RS Setup

15.4.1. Compile-time dependency

To use Errai JAX-RS, you must include it on the compile-time classpath. If you are using Maven
for your build, add this dependency:

<dependency>
<groupl d>org. j boss. errai </ gr oupl d>
<artifactld>errai-jaxrs-client</artifactld>
<versi on>${errai.version}</version>
<scope>pr ovi ded</ scope>

</ dependency>

Or if you are not using Maven for dependency management, add errai-jaxrs-client-
${errai.version}.jar toyour classpath.

If you intend to use Errai’'s JSON format on the wire you will need to add Errai's JAX-RS JSON
provider to your classpath and make sure it gets deployed to the server.

<dependency>
<gr oupl d>or g. j boss. errai </ groupl d>
<artifactld>errai-jaxrs-provider</artifactld>
<version>${errai.version}</version>

</ dependency>

Or manually add errai-jaxrs-provider-${errai.version}.jar in case you’re not using
Maven. If your REST service returns Jackson generated JSON you do not need the errai-jaxrs-
provider (see Configuration) .

15.4.2. GWT Module

Once you have Errai JAX-RS on your classpath, ensure your application inherits the GWT module
as well. Add this line to your application’s *. gwt . xmi file:

<inherits nane="org.jboss.errai.enterprise.Jaxrs"/>

191

Chapter 15. Configuration

15.4.3. Configuration

15.4.3.1. Configuring the default root path of JAX-RS endpoints

All paths specified using the @at h annotation on JAX-RS interfaces are by definition relative
paths. Therefore, by default, it is assumed that the JAX-RS endpoints can be found at the specified
paths relative to the GWT client application’s context path.

To configure a relative or absolute root path, the following JavaScript variable can be set in either:

e The host HTML page;

<script type="text/javascript">
errai JaxRsAppl i cati onRoot = "/ My/JaxRsEndpoi nt Pat h";
</scri pt>

* By using a JSNI method,;

private native void set M\JaxRsAppRoot (String path) /*-{
$wnd. errai JaxRsAppl i cati onRoot = pat h;
p-x1

e Or by simply invoking.
Rest Cli ent. set Appl i cati onRoot ("/ MyJaxRsEndpoi nt Pat h") ;

The root path will be prepended to all paths specified on the JAX-RS interfaces. It serves as the
base URL for all requests sent from the client.

15.4.3.2. Enabling Jackson marshalling

The following options are available for activating Jackson marshalling on the client. Note that
this is a client-side configuration, the JAX-RS endpoint is assumed to already return a Jackson
representation (Jackson is supported by all JAX-RS implementations). The errai -j axrs-
provi der-${errai.version}.jar does not have to be deployed on the server in this case!

To use the Jackson marshaller add on of these configurations:
» Set a Javascript variable in the GWT Host Page;
<script type="text/javascript">

errai JaxRsJacksonMar shal | i ngActive = true;
</script>

192

Errai JPA

* Use a JSNI method,;

private native void setJacksonMarshallingActive(bool ean active) /*-{
$wnd. errai JaxRsJacksonMar shal | i ngActive = acti ve;
p-x1

* Or invoke a method in RestClient.

Rest Cl i ent. set JacksonMar shal | i ngActi ve(true);

15.5. Errai JPA

15.5.1. Compile-time Dependencies
To use Errai JPA, you must include it on the compile-time classpath. If you are using Maven for

your build, add this dependency:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-jpa-client</artifactld>
<version>${errai.version}</version>

</ dependency>

If you are not using Maven for dependency management, add errai-jpa-client-
${errai.version}.jar ,Hibernate 4.1.1, and Google Guava for GWT 12.0 to your compile-time
classpath.

15.5.2. GWT Module Descriptor

Once you have Errai JPA on your classpath, ensure your application inherits the GWT module as
well. Add this line to your application’s *. gwt . xni file:

<inherits name="org.jboss.errai.jpa.JPA"/>

15.6. Errai JPA Data Sync

15.6.1. Compile-time Dependencies

First, ensure your pom xm includes a dependency on the Data Sync module. This module must
be packaged in your application’s WAR file, so include it with the default scope (compile):

193

Chapter 15. Configuration

<dependency>
<gr oupl d>org. j boss. errai </ groupl d>
<artifactld>errai-jpa-datasync</artifactld>
<version>${errai.version}</version>

</ dependency>

15.6.2. GWT Module Descriptor

Then, ensure your project’s *. gwt . xm module descriptor includes a dependency on the Data
Sync GWT module:

<inherits nane="org.jboss.errai.jpa.sync. DataSync"/>

15.7. Errai Data Binding

15.7.1. Compile-time Dependencies

To use Errai’s data binding module, you must include it on the compile-time classpath. If you are
using Maven for your build, add this dependency:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-data-binding</artifactld>
<versi on>${errai.version}</version>

</ dependency>

If you are not using Maven for dependency management, add err ai-dat a- bi ndi ng-
${errai.version}.jar toyour classpath.

15.7.2. GWT module descriptor

You must also inherit the Errai data binding module by adding the following line to your GWT
module descriptor (gwt.xml).

Example 15.1. App.gwt.xml

<inherits nane="org.jboss. errai.databi ndi ng. Dat aBi ndi ng" />

194

Bootstrapping Data Binding without Errai IOC

15.7.3. Bootstrapping Data Binding without Errai IOC

In case you don’t want to or cannot use Errai’s IOC container you will have to manually bootstrap
Errai Data Binding and inherit the Errai Common GWT module:

Bi ndabl ePr oxyLoader proxyLoader = GM. creat e(Bi ndabl ePr oxyLoader. cl ass);
pr oxyLoader . | oadBi ndabl ePr oxi es() ;

<i nherits nanme="org.jboss. errai.comon. Errai Conmon"/ >

15.8. Errai Ul

15.8.1. Compile-time dependency

The easiest way to get Errai Ul on your classpath is to depend on the special err ai - j avaee- al |
artifact, which brings in most Errai modules:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-javaee-all</artifactld>
<version>${errai.version}</version>

</ dependency>

Or if you prefer to manage your project’s dependency in a finer-grained way, you can depend on
errai-ui directly:

<dependency>
<groupl d>org. j boss. errai </ groupl d>
<artifactld>errai-ui</artifactld>
<version>%${errai.version}</version>
</ dependency>

15.8.2. GWT Module Descriptor

Once you have Errai Ul on your classpath, ensure your application inherits the GWT module as
well. Add this line to your application’s *. gwt . xni file:

<inherits nane="org.jboss.errai.ui.u" />

195

Chapter 15. Configuration

15.9. Errai Ul Navigation

15.9.1. Compile-time Dependencies

To use Errai Ul Navigation, you must include it on the compile-time classpath. If you are using
Maven for your build, add these dependencies:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-navigation</artifactld>
<versi on>${errai.version}</version>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<groupl d>org. j boss. errai </ groupl d>
<artifactld>errai-cdi-client</artifactld>
<version>${errai.version}</version>
<scope>pr ovi ded</ scope>

</ dependency>

If you are not using Maven for dependency management, add errai-navigation-
${errai.version}.jar to the compile-time classpath of a project that's already set up for Errai
Ul templating.

15.9.2. GWT Module Descriptor

Once you have Errai Ul Navigation on your classpath, ensure your application inherits the GWT
module as well. Add this line to your application’s *. gwt . xm file:

<inherits nane="org.jboss. errai.ui.nav. Navi gati on"/>

15.10. Errai Cordova (Mobile Support)

15.10.1. Compile-time Dependencies

Using Errai Cordova requires the following compile-time dependency:

<dependency>
<groupl d>or g. j boss. errai </ gr oupl d>
<artifactld>errai-cordova</artifactld>
<version>${errai.verison}</version>

</ dependency>

196

Cordova Maven Plugin

15.10.2. Cordova Maven Plugin

Errai Cordova allows you build an Errai app to natively run on a device. In order to make this as
easy as possible we have a maven plugin that will create a native binary that you can install on a
device. It will put the html and javascript of you application in a cordova [http://cordova.apache.org/

] application.
<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>org. j boss. errai </ groupl d>
<artifactld>cordova- maven- pl ugi n</artifact!d>
<version>${errai.version}</version>

</ pl ugi n>

15.10.3. GWT Module Descriptor

Add the following to your application’s *. gwt . xm module file:
<inherits nane="org.jboss.errai.ui.Cordova"/>

Because the client is no longer served by the server the client will need to know how it can reach
the server to do that place the following in your gwt.xml:

<repl ace-wi th cl ass="com conpany. appl i cation. Config">
<when-type-is class="org.jboss.errai.bus.client.framework. Configuration" />
</repl ace-wit h>

This class must implement org.j boss. errai.bus.client.framework. Configuration and
return the url where the server is configured.

i nport org.jboss.errai.bus.client.franmework. Configuration;

public class Config inplenments Configuration {
@verride
public String getRenotelLocation() {
/'l you probably want to do sonething environnment specify here instead
of sonmething like this:
return "https://grocery-edew t.rhcl oud.com errai-j pa-deno-grocery-1list"

197

http://cordova.apache.org/
http://cordova.apache.org/

Chapter 15. Configuration

15.10.4. Building with Errai Cordova

Now you can execute a native build with the following maven command:

#will build all supported platfornms for now only ios and android
nmvn cordova: bui |l d- pr oj ect

#only build android
mvn cor dova: bui | d- proj ect - Dpl at f or n=andr oi d

#start the ios enulator with the depl oyed application
mv/n cordova: enul at or - Dpl at f or i 0s

Important

For these to work you'll need to have the SDK’s installed and on your path! In
case of android you will additionally have to have ANDROID HOME environment
variable set.

15.11. Errai Security

15.11.1. Compile-time dependency

Errai Security requires to modules to be included in a project:

<dependency>
<groupl d>or g. j boss. errai </ groupl d>
<artifactld>errai-security-server</artifactld>
<version>${errai.version}</version>

</ dependency>

<dependency>
<groupl d>org. j boss. errai </ groupl d>
<artifactld>errai-security-client</artifactld>
<scope>pr ovi ded</ scope>
<versi on>${errai.version}</version>

</ dependency>

If you are using picketlink for authentication, you should also include this:

198

GWT Module Descriptor

<dependency>
<gr oupl d>org. j boss. errai </ groupl d>
<artifactld>errai-security-picketlink</artifactld>
<version>${errai.version}</version>

</ dependency>

15.11.2. GWT Module Descriptor

Once you have Errai Security Client on your classpath, ensure your application inherits the GWT
module as well. Add this line to your application’s *. gwt . xn file:

<inherits nanme="org.jboss.errai.security. Security" />

15.11.3. CDI and Interceptor Bindings

Errai security requires a CDI container to intercept calls to remote services. In particular, the
following interceptor must be added to your application’s beans. xm :

<i nt er cept or s>
<cl ass>org.j boss. errai.security.server. Server SecurityRol el nterceptor</class>
</interceptors>

15.12. Errai Project Dependencies

For those not using maven, here is the dependency tree of Errai project jars.

15.12.1. Errai Messaging

e org.jboss.errai:errai-bus:jar
 org.jboss.errai:errai-common:jar:compile
* org.jboss.errai.reflections:reflections:jar.compile
« de.benediktmeurer.gwt-sIf4j:gwt-sif4j:jar:0.0.2:compile
 org.jboss.errai:errai-config:jar:compile
* org.jboss.errai:errai-marshalling:jar:compile
* org.jboss.errai:errai-codegen:jar:compile

» org.jboss.errai:errai-codegen-gwt:jar:compile

199

Chapter 15. Configuration

* javax.annotation:jsr250-api:jar:1.0:compile
* javax.enterprise:cdi-api:jar:1.0-SP4:compile

* org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1_spec:jar:1.0.0.Betal:compile

» org.jboss.spec.javax.servlet:;jpboss-servlet-api_3.0_spec:jar:1.0.0.Final:provided
e com.google.gwt:gwt-user:jar:2.5.1:provided
* javax.validation:validation-api:jar:1.0.0.GA:provided
 javax.validation:validation-api:jar:sources:1.0.0.GA:provided
 org.json:json:jar:20090211:provided
e com.google.gwt:gwt-dev:jar:2.5.1:provided
» com.google.inject:guice:jar:3.0:compile
« aopalliance:aopalliance:jar:1.0:compile
* javax.inject:javax.inject:jar:1:compile
e org.mvel:mvel2:jar:2.1.7.Final:compile
* org.slf4j:slf4j-api:jar:1.7.2:compile
e org.mortbay.jetty:jetty:jar:6.1.25:provided
< org.mortbay.jetty:jetty-util:jar:6.1.25:provided
« org.mortbay.jetty:servlet-api:jar:2.5-20081211:provided
» org.jboss:jboss-vfs:jar:3.0.1.GA:provided
e junit;junit:;jar:4.10:compile
¢ org.hamcrest:hamcrest-core:jar:1.1:compile
e org.javassist;javassist;jar:3.15.0-GA:compile
* jo.netty:netty-codec-http:jar:4.0.12.Final:compile
* jo.netty:netty-codec:jar:4.0.12.Final:compile
* jo.netty:netty-transport:jar:4.0.12.Final:compile

* io.netty:netty-handler:jar:4.0.12.Final:compile

200

Errai CDI

* jo.netty:netty-common:jar:4.0.12.Final:compile
e com.google.guava:guava:jar:14.0.1:compile
 javax:javaee-api:jar:6.0:provided

* org.jgroups:jgroups:jar:3.2.10.Final:compile

15.12.2. Errai CDI

 org.jboss.errai:errai-weld-integration:jar
 org.jboss.errai:errai-common:jar:compile
« org.jboss.errai.reflections:reflections:jar.compile
e domdj:dom4j:jar:1.6.1:compile
» xml-apis:xml-apis:jar:1.4.01:compile
« de.benediktmeurer.gwt-sIf4j:gwt-sif4j:jar:0.0.2:compile
* org.jboss.errai:errai-bus:jar:.compile
« org.jboss.errai:errai-marshalling:jar:compile
e com.google.inject:guice:jar:3.0:compile
» aopalliance:aopalliance:jar:1.0:compile
* javax.inject:;javax.inject:jar:1:compile
e org.mvel:mvel2:jar:2.1.7.Final:compile
e org.javassist:javassist:jar:3.15.0-GA:compile
* io.netty:netty-codec-http:jar:4.0.12.Final:compile
* io.netty:netty-codec:jar:4.0.12.Final:compile
* io.netty:netty-transport:jar:4.0.12.Final:compile
* jo.netty:netty-handler:jar:4.0.12.Final:compile
* jo.netty:netty-buffer:jar:4.0.12.Final:compile
e io.netty:netty-common:jar:4.0.12.Final:compile
« com.google.guava:guava:jar:14.0.1:compile

¢ org.jgroups:jgroups:jar:3.2.0.Final:compile

201

Chapter 15. Configuration

* org.jboss.errai:errai-config:jar:.compile
 org.jboss.errai:errai-ioc:jar:provided

* org.jboss.errai:errai-codegen:jar:compile

» org.jboss.errai:errai-codegen-gwt:jar.compile

* javax.annotation:jsr250-api:jar:1.0:compile
 org.jboss.errai:errai-ioc-bus-support:jar:provided
* javax.enterprise:cdi-api:jar:1.0-SP4:provided

» org.jboss.spec.javax.interceptor:jboss-interceptors-api_1.1_spec:jar:1.0.0.Betal:provided
* org.jboss.errai:errai-cdi-client:jar:compile
« org.slf4j:slf4j-api:jar:1.7.2:provided
» com.google.gwt:gwt-user:jar:2.5.1:provided

e org.json:json:jar:20090211:provided
» com.google.gwt:gwt-dev:jar:2.5.1:provided
* javax.validation:validation-api:jar:1.0.0.GA:provided
* javax.validation:validation-api:jar:sources:1.0.0.GA:provided
 org.jboss.spec.javax.ejb:jboss-ejb-api_3.1 spec:jar:1.0.2.Final:provided
» org.quartz-scheduler:quartz:jar:2.1.6:provided

e ¢c3p0:c3p0:jar:0.9.1.1:provided
* junit;junit:;jar:4.10:provided

« org.hamcrest:hamcrest-core:jar:1.1:provided
 org.jboss:jboss-common-core:jar:2.2.17.GA:provided

 org.jboss.logging:jboss-logging-spi:jar:2.1.0.GA:provided
 org.jboss.errai:errai-javax-enterprise:jar:provided
 org.jboss.errai:errai-data-binding:jar:provided

e com.google.guava:guava-gwt:jar:14.0.1:provided

« com.google.code.findbugs:jsr305:jar:1.3.9:provided

202

Errai CDI

 org.jboss.errai:errai-cdi-client:jar
 org.jboss.errai:errai-javax-enterprise:jar:provided
* org.jboss.errai:errai-bus:jar:.compile
 org.jboss.errai:errai-common:jar.compile
* org.jboss.errai.reflections:reflections:jar:.compile
e domdj:domdj;jar:1.6.1:compile
» xml-apis:xml-apis:jar:1.4.01:compile
 de.benediktmeurer.gwt-slf4j:gwt-slf4j:jar:0.0.2:compile
 org.jboss.errai:errai-config:jar:compile
 org.jboss.errai:errai-marshalling:jar:compile
e com.google.inject:guice:jar:3.0:compile
 aopalliance:aopalliance:jar:1.0:compile
¢ javax.inject:;javax.inject:jar:1:compile
e org.mvel:mvel2:jar:2.1.7.Final:compile
* org.slf4j:slf4j-api:jar:1.7.2:compile
e org.javassist:javassist:jar:3.15.0-GA:compile
* io.netty:netty-codec-http:jar:4.0.12.Final:compile
* j0.netty:netty-codec:jar:4.0.12.Final:compile
* jo.netty:netty-transport:jar:4.0.12.Final:compile
* io.netty:netty-handler:jar:4.0.12.Final:compile
* jo.netty:netty-buffer:jar:4.0.12.Final:compile
* io.netty:netty-common:jar:4.0.12.Final:compile
e com.google.guava:guava:jar:14.0.1:compile
 org.jgroups:jgroups:jar:3.2.10.Final:compile
* org.jboss.errai:errai-ioc-bus-support:jar.compile

» org.jboss.errai:errai-codegen:jar.compile

* javax.annotation:jsr250-api:jar:1.0:compile

203

Chapter 15. Configuration

* javax.enterprise:cdi-api:jar:1.0-SP4:compile

 org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1_spec:jar:1.0.0.Betal:compile

 org.jboss.spec.javax.ejb:jboss-ejb-api_3.1 spec:jar:1.0.2.Final:provided
 org.quartz-scheduler:quartz:jar:2.1.6:provided

e ¢c3p0:c3p0:jar:0.9.1.1:provided
 org.jboss.errai:errai-ioc:jar:compile

« org.jboss.errai:errai-codegen-gwt:jar.compile
 javax:javaee-api:jar:6.0:provided
» com.google.gwt:gwt-user:jar:2.5.1:provided

* org.json:json:jar:20090211:provided
e com.google.gwt:gwt-dev:jar:2.5.1:provided
* junitjunit:;jar:4.10:provided

« org.hamcrest:hamcrest-core:jar:1.1:provided
* javax.validation:validation-api:jar:1.0.0.GA:provided

* javax.validation:validation-api:jar:sources:1.0.0.GA:provided

15.12.3. Errai 10C

 org.jboss.errai:errai-ioc:jar
* org.jboss.errai:errai-config:jar:compile
* org.jboss.errai:errai-codegen:jar:compile
* org.jboss.errai:errai-common:jar:compile
 org.jboss.errai.reflections:reflections:jar.compile
e com.google.guava:guava:jar:14.0.1:compile
» org.javassist;javassist:jar:3.15.0-GA:compile
» domdj:domdj:jar:1.6.1:compile
« xml-apis:xml-apis:jar:1.4.01:compile

 de.benediktmeurer.gwt-slfdj:gwt-slf4j:jar:0.0.2:compile

204

Errai Ul

» org.mvel:mvel2:jar:2.1.7.Final:compile
 org.jboss.errai:errai-codegen-gwt:jar:compile
e com.google.inject:guice:jar:3.0:compile
« aopalliance:aopalliance:jar:1.0:compile
* javax.inject:javax.inject:jar:1:compile
* org.jboss.errai:errai-javax-enterprise:jar:compile
* javax.annotation:jsr250-api:jar:1.0:compile
* javax.enterprise:cdi-api:jar:1.0-SP4:compile
« org.jboss.spec.javax.interceptor:jboss-interceptors-api_1.1_spec:jar:1.0.0.Betal:compile
» com.google.gwt:gwt-user:jar:2.5.1:provided
* javax.validation:validation-api:jar:1.0.0.GA:provided
« javax.validation:validation-api:jar:sources:1.0.0.GA:provided
 org.json:json:jar:20090211:provided
» com.google.gwt:gwt-dev:jar:2.5.1:provided
* junit:junit:jar:4.10:provided
¢ org.hamcrest:hamcrest-core:jar:1.1:provided

15.12.4. Errai Ul

 org.jboss.errai:errai-uibinder:jar
 org.jboss.errai:errai-bus:jar:provided
» org.jboss.errai:errai-common:jar:provided
 org.jboss.errai.reflections:reflections:jar:provided
» domd4j:.dom4j;jar:1.6.1:provided
» xml-apis:xml-apis:jar:1.4.01:provided
 de.benediktmeurer.gwt-slf4j:gwt-slf4j:jar:0.0.2:provided
 org.jboss.errai:errai-config:jar:provided

 org.jboss.errai:errai-marshalling:jar:provided

205

Chapter 15. Configuration

e org.mvel:mvel2:jar:2.1.7.Final:provided
« org.slf4j:slf4j-api:jar:1.7.2:provided
 org.javassist:;javassist:jar:3.15.0-GA:provided
* io.netty:netty-codec-http:jar:4.0.12.Final:compile
* jo.netty:netty-codec:jar:4.0.12.Final:compile
e io.netty:netty-transport:jar:4.0.12.Final:compile
* jo.netty:netty-handler:jar:4.0.12.Final:compile
* io.netty:netty-buffer:jar:4.0.12.Final:compile
* jo.netty:netty-common:jar:4.0.12.Final:compile
e com.google.guava:guava:jar:14.0.1:provided
¢ org.jgroups:jgroups:jar:3.2.10.Final:provided
 org.jboss.errai:errai-ioc:jar:provided
¢ org.jboss.errai.errai-codegen:jar:provided
 org.jboss.errai:errai-codegen-gwt:jar:provided
 org.jboss.errai:errai-javax-enterprise:jar:provided
* javax.annotation:jsr250-api:jar:1.0:provided
* javax.enterprise:cdi-api:jar:1.0-SP4:provided

 org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1 spec:jar:1.0.0.Betal:provided

e com.google.inject:guice:jar:3.0:provided
« aopalliance:aopalliance:jar:1.0:provided
 javax.inject:;javax.inject:jar:1:compile
» com.google.gwt:gwt-user:jar:2.5.1:provided
 javax.validation:validation-api:jar:1.0.0.GA:provided
« javax.validation:validation-api:jar:sources:1.0.0.GA:provided

e org.json:json:jar:20090211:provided

20

Errai Navigation

15.12.5. Errai Navigation

 org.jboss.errai:errai-navigation:jar
 org.jboss.errai:errai-cdi-client:jar:provided
 org.jboss.errai:errai-bus:jar:provided
« org.mvel:mvel2:jar:2.1.7.Final:provided
* org.slf4j:slf4j-api:jar:1.7.2:provided
 org.javassist:javassist:jar:3.15.0-GA:provided
* i0.netty:netty-codec-http:jar:4.0.12.Final:compile
* jo.netty:netty-codec:jar:4.0.12.Final:compile
* jo.netty:netty-transport:jar:4.0.12.Final:compile
* io.netty:netty-handler:jar:4.0.12.Final:compile
* io.netty:netty-buffer:jar:4.0.12.Final:compile
* io.netty:netty-common:jar:4.0.12.Final:compile
 org.jgroups:jgroups:jar:3.2.10.Final:provided
 org.jboss.errai:errai-ioc-bus-support:jar:provided
 org.jboss.errai:errai-ioc:jar:provided
 org.jboss.errai:errai-config:jar:provided
» org.jboss.errai:errai-codegen:jar:provided
 org.jboss.errai:errai-codegen-gwt:jar:provided
e com.google.inject:guice:jar:3.0:provided
« aopalliance:aopalliance:jar:1.0:provided
* javax.inject:javax.inject:jar:1:provided
* javax.annotation:jsr250-api:jar:1.0:provided
* javax.enterprise:cdi-api:jar:1.0-SP4:provided

» org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1 spec:jar:1.0.0.Betal:provided

 org.jboss.errai:errai-javax-enterprise:jar:provided

207

Chapter 15. Configuration

* org.jboss.errai:errai-marshalling:jar:provided
* org.jboss.errai:errai-common:jar:provided
« org.jboss.errai.reflections:reflections:jar:provided
» domd4j:dom4j:jar:1.6.1:provided
» xml-apis:xml-apis:jar:1.4.01:provided
» de.benediktmeurer.gwt-slf4j:gwt-slf4j:jar:0.0.2:provided
e com.google.guava:guava-gwt:jar:14.0.1:compile
e com.google.code.findbugs:jsr305:jar:1.3.9:compile
« com.google.guava:guava:jar:14.0.1:compile
» com.google.gwt:gwt-user:jar:2.5.1:provided

* javax.validation:validation-api:jar:1.0.0.GA:provided

« javax.validation:validation-api:jar:sources:1.0.0.GA:provided

 org.json:json:jar:20090211:provided
» com.google.gwt:gwt-dev:jar:2.5.1:provided
» org.jboss.weld.se:weld-se-core:jar:1.1.6.Final:provided
* org.jboss.weld:weld-spi:jar:1.1.Final:provided
* org.jboss.weld:weld-api:jar:1.1.Final:provided
 org.jboss.weld:weld-core:jar:1.1.13.Final:provided
* org.slf4j:slf4j-ext:jar:1.7.2:provided
» ch.gos.call0n:call0n-api:jar:0.7.4:provided
* javax.el:el-api:jar:2.2:provided

* org.jboss.errai:errai-weld-integration:jar:provided

15.12.6. Errai DataBinding

 org.jboss.errai:errai-data-binding:jar
* org.jboss.errai:errai-ioc:jar:provided

« org.jboss.errai:errai-config:jar:compile

208

Errai DataBinding

* org.jboss.errai:errai-codegen:jar:compile
e org.mvel:mvel2:jar:2.1.7.Final:compile
 org.jboss.errai:errai-codegen-gwt:jar.compile
« com.google.inject:guice:jar:3.0:provided
 aopalliance:aopalliance:jar:1.0:provided
* javax.inject:;javax.inject:jar:1:compile
 org.jboss.errai:errai-javax-enterprise:jar:provided
* javax.annotation:jsr250-api:jar:1.0:compile

* javax.enterprise:cdi-api:jar:1.0-SP4:compile

o * org.jboss.spec.javax.interceptor:jboss-interceptors-

api_1.1 spec:jar:1.0.0.Betal:compile
 org.jboss.errai:errai-marshalling:jar:compile
* org.jboss.errai:errai-common:jar:compile
 org.jboss.errai.reflections:reflections:jar.compile
» org.javassist;javassist:jar:3.15.0-GA:compile
* org.slf4j:slf4j-api:jar:1.7.2:compile
» domd4j:.dom4j;jar:1.6.1:compile
» xml-apis:xml-apis:jar:1.4.01:compile
 de.benediktmeurer.gwt-slf4j:gwt-sif4j:jar:0.0.2:compile
e com.google.gwt:gwt-user:jar:2.5.1:provided
 org.json:json:jar:20090211:provided
e com.google.gwt:gwt-dev:jar:2.5.1:provided
» com.google.guava:guava-gwt:jar:14.0.1:compile
« com.google.code.findbugs:jsr305:jar:1.3.9:compile
e com.google.guava:guava:jar:14.0.1:compile
e junit:junit:;jar:4.10:provided

209

Chapter 15. Configuration

* javax.validation:validation-api:jar:1.0.0.GA:provided

* javax.validation:validation-api:jar:sources:1.0.0.GA:provided

15.

12.7. Errai JPA Client

 org.jboss.errai:errai-jpa-client:jar

org.hibernate:hibernate-entitymanager:jar:4.2.0.Final:compile
« org.jboss.logging:jboss-logging:jar:3.1.2.GA:compile
« org.hibernate:hibernate-core:jar:4.2.0.Final:compile
 antlr:antlr:jar:2.7.7:compile
 org.jboss.spec.javax.transaction:jboss-transaction-api_1.1_spec:jar:1.0.1.Final:compile
¢ domd4j:dom4j:jar:1.6.1:compile
e org.javassist:javassist:jar:3.15.0-GA:compile
« org.hibernate.common:hibernate-commons-annotations:jar:4.0.1.Final:compile
org.hibernate.javax.persistence:hibernate-jpa-2.0-api:jar:1.0.1.Final:compile
org.jboss.errai:errai-ioc:jar.compile
» org.jboss.errai:errai-config:jar:compile
« org.jboss.errai:errai-codegen:jar:compile
* org.jboss.errai:errai-common:jar:compile
* org.jboss.errai.reflections:reflections:jar:compile
 de.benediktmeurer.gwt-slf4j:gwt-slf4j:jar:0.0.2:compile
« org.mvel:mvel2:jar:2.1.7.Final:compile
« org.jboss.errai:errai-codegen-gwt:jar:compile
e com.google.inject:guice:jar:3.0:compile
 aopalliance:aopalliance:jar:1.0:compile
 javax.inject:;javax.inject:jar:1:compile
« org.jboss.errai:errai-javax-enterprise:jar:compile

¢ javax.annotation:jsr250-api:jar:1.0:compile

210

Errai JPA Datasync

* javax.enterprise:cdi-api:jar:1.0-SP4:compile

 org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1_spec:jar:1.0.0.Betal:compile

* org.jboss.errai:errai-data-binding:jar:compile
* org.jboss.errai:errai-marshalling:jar:compile

» com.google.gwt:gwt-user:jar:2.5.1:compile
 javax.validation:validation-api:jar:1.0.0.GA:compile
 javax.validation:validation-api:jar:sources:1.0.0.GA:compile
e org.json:json:jar:20090211:compile

» com.google.gwt:gwt-dev:jar:2.5.1:provided

* com.google.guava:guava-gwt:jar:14.0.1:compile
e com.google.code.findbugs:jsr305:jar:1.3.9:compile

e com.google.guava:guava:jar:14.0.1:compile

15.12.8. Errai JPA Datasync

» org.jboss.errai:errai-jpa-datasync:jar
 org.hibernate.javax.persistence:hibernate-jpa-2.0-api:jar:1.0.1.Final:provided
 org.jboss.errai:errai-jpa-client:jar:compile

« org.hibernate:hibernate-entitymanager:jar:4.2.0.Final:compile
* org.jboss.logging:jboss-logging:jar:3.1.2.GA:compile
« org.hibernate:hibernate-core:jar:4.2.0.Final:compile

 antlr:antlr:jar:2.7.7:compile

 org.jboss.spec.javax.transaction:jboss-transaction-api_1.1_spec:jar:1.0.1.Final:compile
* domd4j:dom4j;jar:1.6.1:compile
 org.hibernate.common:hibernate-commons-annotations:jar:4.0.1.Final:compile

¢ org.jboss.errai:errai-ioc:jar:compile
« org.jboss.errai:errai-codegen:jar.compile

 org.jboss.errai:errai-codegen-gwt:jar:compile

211

Chapter 15. Configuration

 org.jboss.errai:errai-javax-enterprise:jar:compile
 javax.annotation:jsr250-api:jar:1.0:compile
* javax.enterprise:cdi-api:jar:1.0-SP4:compile

 org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1 spec:jar:1.0.0.Betal:compile

 org.jboss.errai:errai-data-binding:jar:compile
e com.google.gwt:gwt-user:jar:2.5.1:compile
« javax.validation:validation-api:jar:1.0.0.GA:compile
* javax.validation:validation-api:jar:sources:1.0.0.GA:compile
« com.google.guava:guava-gwt:jar:14.0.1:compile
« com.google.code.findbugs:jsr305:jar:1.3.9:compile
 org.jboss.errai:errai-bus:jar.compile
* org.jboss.errai:errai-common:jar:compile
 org.jboss.errai.reflections:reflections:jar.compile
 de.benediktmeurer.gwt-slf4j:gwt-sif4j:jar:0.0.2:compile
 org.jboss.errai:errai-config:jar:compile
 org.jboss.errai:errai-marshalling:jar:compile
« com.google.inject:guice:jar:3.0:compile
 aopalliance:aopalliance:jar:1.0:compile
 javax.inject:;javax.inject:jar:1:compile
e org.mvel:mvel2:jar:2.1.7.Final:compile
e org.javassist:javassist:jar:3.15.0-GA:compile
* io.netty:netty-codec-http:jar:4.0.12.Final:compile
* j0.netty:netty-codec:jar:4.0.12.Final:compile
* jo.netty:netty-transport:jar:4.0.12.Final:compile

* io.netty:netty-handler:jar:4.0.12.Final:compile

212

Errai JAXRS

* jo.netty:netty-common:jar:4.0.12.Final:compile
e com.google.guava:guava:jar:14.0.1:compile
¢ org.jgroups:jgroups:jar:3.2.10.Final:compile
 org.jboss.errai:errai-cdi-client:jar.compile

 org.jboss.errai:errai-ioc-bus-support:jar:compile
15.12.9. Errai JAXRS

 org.jboss.errai:errai-jaxrs-client:jar
* org.jboss.errai:errai-marshalling:jar:compile
 org.jboss.errai:errai-common:jar.compile
 org.jboss.errai.reflections:reflections:jar.compile

» org.javassist;javassist:jar:3.15.0-GA:compile

org.slf4j:slf4j-api:jar:1.7.2:compile
» domd4j:dom4j:jar:1.6.1:compile
» xml-apis:xml-apis:jar:1.4.01:compile
 de.benediktmeurer.gwt-slf4j:gwt-slif4j:jar:0.0.2:compile
* org.jboss.errai:errai-config:jar:compile
« org.jboss.errai:errai-codegen:jar:compile
e org.mvel:mvel2:jar:2.1.7.Final:compile
« org.jboss.errai:errai-codegen-gwt:jar.compile
* javax.inject:javax.inject:jar:1:compile
* javax.annotation:jsr250-api:jar:1.0:compile
* javax.enterprise:cdi-api:jar:1.0-SP4:compile

o * org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1 spec:jar:1.0.0.Betal:compile

» com.google.gwt:gwt-user:jar:2.5.1:provided
e org.json:json:jar:20090211:provided

e com.google.gwt:gwt-dev:jar:2.5.1:provided

213

Chapter 15. Configuration

* junit;junit:;jar:4.10:provided
« org.hamcrest:hamcrest-core:jar:1.1:provided
* javax.validation:validation-api:jar:1.0.0.GA:provided
* javax.validation:validation-api:jar:sources:1.0.0.GA:provided
» org.jboss.resteasy:jaxrs-api:jar:2.3.6.Final:compile
e com.google.guava:guava-gwt:jar:14.0.1:compile
« com.google.code.findbugs:jsr305:jar:1.3.9:compile
e com.google.guava:guava:jar:14.0.1:compile
 org.jboss.errai:errai-jaxrs-provider:jar
 org.jboss.resteasy:jaxrs-api:jar:2.3.6.Final:compile
* org.jboss.errai:errai-marshalling:jar:compile
 org.jboss.errai:errai-common:jar.compile
* org.jboss.errai.reflections:reflections:jar:compile
e com.google.guava:guava:jar:14.0.1:compile

» org.javassist;javassist:jar:3.15.0-GA:compile

org.slfdj:slf4j-api:jar:1.7.2:compile
» domd4j:.dom4j;jar:1.6.1:compile
» xml-apis:xml-apis:jar:1.4.01:compile
 de.benediktmeurer.gwt-slf4j:gwt-sif4j:jar:0.0.2:compile
» org.jboss.errai:errai-config:jar:compile
* org.jboss.errai:errai-codegen:jar:compile
e org.mvel:mvel2:jar:2.1.7.Final:compile
 org.jboss.errai:errai-codegen-gwt:jar.compile
 javax.inject:;javax.inject:jar:1:compile
* javax.annotation:jsr250-api:jar:1.0:compile

* javax.enterprise:cdi-api:jar:1.0-SP4:compile

214

Errai Cordova

* org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1_spec:jar:1.0.0.Betal:compile

15.12.10. Errai Cordova

 org.jboss.errai:errai-cordova:jar
 org.jboss.errai:errai-bus:jar:compile

 org.jboss.errai:errai-common:jar.compile
 de.benediktmeurer.gwt-slf4j:gwt-slif4j:jar:0.0.2:compile

 org.jboss.errai:errai-config:jar:compile

 org.jboss.errai:errai-marshalling:jar:compile
 org.jboss.errai:errai-codegen:jar.compile
 org.jboss.errai:errai-codegen-gwt:jar:compile
 javax.annotation:jsr250-api:jar:1.0:compile
 javax.enterprise:cdi-api:jar:1.0-SP4:compile

 org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1 spec:jar:1.0.0.Betal:compile

e com.google.inject:guice:jar:3.0:compile
 aopalliance:aopalliance:jar:1.0:compile
* javax.inject:javax.inject:jar:1:compile
e org.mvel:mvel2:jar:2.1.7.Final:compile
« org.slf4j:slf4j-api:jar:1.7.2:compile
e org.javassist:javassist:jar:3.15.0-GA:compile
* io.netty:netty-codec-http:jar:4.0.12.Final:compile
* j0.netty:netty-codec:jar:4.0.12.Final:compile
* io.netty:netty-transport:jar:4.0.12.Final:compile
* jo.netty:netty-handler:jar:4.0.12.Final:compile
* io.netty:netty-buffer:jar:4.0.12.Final:compile

* i0.netty:netty-common:jar:4.0.12.Final:compile

215

Chapter 15. Configuration

e com.google.guava:guava:jar:14.0.1:compile
« org.jgroups:jgroups:jar:3.2.10.Final:compile
 org.jboss.errai:errai-cdi-client:jar.compile
» org.jboss.errai:errai-ioc-bus-support:jar:compile
» org.jboss.errai:errai-javax-enterprise:jar:compile
 org.jboss.errai:errai-ioc:jar:compile
* org.jboss.errai:errai-jaxrs-client:jar:compile
« org.jboss.resteasy:jaxrs-api:jar:2.3.6.Final:compile
e com.google.guava:guava-gwt:jar:14.0.1:compile
« com.google.code.findbugs:jsr305:jar:1.3.9:compile
* org.jboss.errai:errai-html5:jar:compile
 org.jboss.errai.reflections:reflections:jar.compile
e domdj:dom4j:jar:1.6.1:compile
» xml-apis:xml-apis:jar:1.4.01:compile
 org.jboss.errai:errai-data-binding:jar:compile
» com.google.gwt:gwt-user:jar:2.5.1:provided
« javax.validation:validation-api:jar:1.0.0.GA:provided
 javax.validation:validation-api:jar:sources:1.0.0.GA:provided
* org.json:json:jar:20090211:provided
» com.google.gwt:gwt-dev:jar:2.5.1:provided
» com.googlecode.gwtphonegap:gwtphonegap:jar:2.4.0.0:compile
e commons-io:commons-io:jar:2.4:compile
e junit:junit:;jar:4.10:provided
« org.hamcrest:hamcrest-core:jar:1.1:provided

15.12.11. Errai Security

 org.jboss.errai:errai-security-server:jar:3.0-SNAPSHOT

216

Errai Security

 org.jboss.errai:errai-bus:jar:3.0-SNAPSHOT:compile
 org.jboss.errai:errai-common:jar:3.0-SNAPSHOT:compile
» org.jboss.errai.reflections:reflections:jar:3.0-SNAPSHOT:compile
e domdj:domdj;jar:1.6.1:compile
» xml-apis:xml-apis:jar:1.4.01:compile
 de.benediktmeurer.gwt-slf4j:gwt-slf4j:jar:0.0.2:compile
« org.jboss.errai:errai-config:jar:3.0-SNAPSHOT:compile
 org.jboss.errai:errai-marshalling:jar:3.0-SNAPSHOT:compile
 org.jboss.errai:errai-codegen:jar:3.0-SNAPSHOT:compile
 org.jboss.errai:errai-codegen-gwt:jar:3.0-SNAPSHOT:compile
e com.google.inject:guice:jar:3.0:compile
 aopalliance:aopalliance:jar:1.0:compile
¢ javax.inject:;javax.inject:jar:1:compile
e org.mvel:mvel2:jar:2.1.7.Final:compile
* org.slf4j:slf4j-api:jar:1.7.2:compile
e org.javassist:javassist:jar:3.15.0-GA:compile
* io.netty:netty-codec-http:jar:4.0.12.Final:compile
* j0.netty:netty-codec:jar:4.0.12.Final:compile
* jo.netty:netty-transport:jar:4.0.12.Final:compile
* io.netty:netty-handler:jar:4.0.12.Final:compile
* jo.netty:netty-buffer:jar:4.0.12.Final:compile
* io.netty:netty-common:jar:4.0.12.Final:compile
e com.google.guava:guava:jar:14.0.1:compile
 org.jgroups:jgroups:jar:3.2.10.Final:compile
 org.jboss.errai:errai-data-binding:jar:3.0-SNAPSHOT:provided

« com.google.guava:guava-gwt:jar:14.0.1:provided

217

Chapter 15. Configuration

« com.google.code.findbugs:jsr305:jar:1.3.9:provided
 org.jboss.errai:errai-ui:jar:3.0-SNAPSHOT :provided
* org.jboss.errai:errai-ioc:jar:3.0-SNAPSHOT :provided
 org.jboss.errai:errai-javax-enterprise:jar:3.0-SNAPSHOT:provided
¢ org.codehaus.jackson:jackson-mapper-asl:jar:1.9.12:provided
 org.codehaus.jackson:jackson-core-asl:jar:1.9.9:provided
e org.jsoup:jsoup:jar:1.7.1:provided
« org.apache.stanbol:org.apache.stanbol.enhancer.engines.htmlextractor:jar:0.10.0:provided
« org.apache.clerezza:rdf.core:jar:0.12-incubating:provided
e org.osgi:org.osgi.core:jar:4.2.0:provided
 org.osgi:org.osgi.compendium:jar:4.2.0:provided
 org.apache.clerezza:utils:jar:0.1-incubating:provided
e commons-codec:commons-codec:jar:1.4:provided
 org.apache.httpcomponents:httpcore:jar:4.1:provided
* org.wymiwyg:wymiwyg-commons-core:jar:0.7.6:provided
e commons-logging:commons-logging-api:jar:1.1:provided
* javax.activation:activation:jar:1.1.1:provided
» org.lesscss:lesscss:jar:1.3.3:provided
e commons-io:commons-io:jar:2.4:provided
« commons-logging:commons-logging:jar:1.1.1:provided
» org.apache.commons:commons-lang3:jar:3.1:provided
 org.mozilla:rhino:jar:1.7R4:provided
» com.google.gwt:gwt-user:jar:2.5.1:provided
 javax.validation:validation-api:jar:1.0.0.GA:provided
« javax.validation:validation-api:jar:sources:1.0.0.GA:provided

e org.json:json:jar:20090211:provided

218

Errai Security

« org.picketlink:picketlink-api:jar:2.5.3.Final:compile
« org.picketlink:picketlink-idm-api:jar:2.5.3.Final:compile
* org.picketlink:picketlink-impl:jar:2.5.3.Final:compile
« org.picketlink:picketlink-common:jar:2.5.3.Final:compile
« org.picketlink:picketlink-idm-impl:jar:2.5.3.Final:compile
 org.apache.deltaspike.core:deltaspike-core-api:jar:0.4:compile
 org.jboss.weld.se:weld-se-core:jar:1.1.6.Final:provided
 org.jboss.weld:weld-spi:jar:1.1.Final:provided
* org.jboss.weld:weld-api:jar:1.1.Final:provided
 org.jboss.weld:weld-core:jar:1.1.13.Final:provided

* org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1_spec:jar:1.0.0.Betal:compile

* org.slf4j:slf4j-ext:jar:1.7.2:provided
 ch.gos.call0On:callOn-api:jar:0.7.4:provided
¢ javax.enterprise:cdi-api:jar:1.0-SP4:compile
 javax.el:el-api:jar:2.2:provided
* javax.annotation:jsr250-api:jar:1.0:compile
 org.jboss.errai:errai-security-client:jar:3.0-SNAPSHOT
 org.jboss.errai:errai-bus:jar:3.0-SNAPSHOT:compile
 org.jboss.errai:errai-config:jar:3.0-SNAPSHOT:compile
 org.jboss.errai:errai-marshalling:jar:3.0-SNAPSHOT:compile
« com.google.inject:guice:jar:3.0:compile
 aopalliance:aopalliance:jar:1.0:compile
 javax.inject:;javax.inject:jar:1:compile

e org.mvel:mvel2:jar:2.1.7.Final:compile

« org.slf4j:slf4j-api:jar:1.7.2:compile

219

Chapter 15. Configuration

* io.netty:netty-codec-http:jar:4.0.12.Final:compile
* j0.netty:netty-codec:jar:4.0.12.Final:compile
* jo.netty:netty-transport:jar:4.0.12.Final:compile
* io.netty:netty-handler:jar:4.0.12.Final:compile
* jo.netty:netty-buffer:jar:4.0.12.Final:compile
* io.netty:netty-common:jar:4.0.12.Final:compile
e com.google.guava:guava:jar:14.0.1:compile
* org.jgroups:jgroups:jar:3.2.10.Final:compile
* org.jboss.errai:errai-common:jar:3.0-SNAPSHOT:compile
« org.jboss.errai.reflections:reflections:jar:3.0-SNAPSHOT:compile
* dom4j:dom4j;jar:1.6.1:compile
» xml-apis:xml-apis:jar:1.4.01:compile
¢ de.benediktmeurer.gwt-slf4j:gwt-sif4j:jar:0.0.2:compile
 org.jboss.errai:errai-ui:jar:3.0-SNAPSHOT:compile
¢ org.codehaus.jackson:jackson-mapper-asl:jar:1.9.12:compile
 org.codehaus.jackson:jackson-core-asl:jar:1.9.9:compile
e org.jsoup:jsoup:jar:1.7.1:compile
« org.apache.stanbol:org.apache.stanbol.enhancer.engines.htmlextractor:jar:0.10.0:compile
» org.apache.clerezza:rdf.core:jar:0.12-incubating:compile
e org.osgi:org.osgi.core:jar:4.2.0:compile
 org.osgi:org.osgi.compendium:jar:4.2.0:compile
 org.apache.clerezza:utils:jar:0.1-incubating:compile
* commons-codec:commons-codec:jar:1.4:compile
 org.apache.httpcomponents:httpcore:jar:4.1:compile
* org.wymiwyg:wymiwyg-commons-core:jar:0.7.6:compile

e commons-logging:commons-logging-api:jar:1.1:compile

220

Errai Security

* javax.activation:activation:jar:1.1.1:compile
» org.lesscss:lesscss:jar:1.3.3:compile
e commons-io:commons-io:jar:2.4:compile
« commons-logging:commons-logging:jar:1.1.1:compile
* org.apache.commons:commons-lang3:jar:3.1:compile
 org.mozilla:rhino:jar:1.7R4:compile
 org.jboss.errai:errai-data-binding:jar:3.0-SNAPSHOT:compile
« com.google.guava:guava-gwt:jar:14.0.1:compile
« com.google.code.findbugs:jsr305:jar:1.3.9:compile
 org.jboss.errai:errai-navigation:jar:3.0-SNAPSHOT:compile
 org.jboss.errai:errai-ioc:jar:3.0-SNAPSHOT:compile
 org.jboss.errai:errai-codegen:jar:3.0-SNAPSHOT:compile
¢ org.jboss.errai:errai-codegen-gwt:jar:3.0-SNAPSHOT:compile
» org.jboss.errai:errai-javax-enterprise:jar:3.0-SNAPSHOT:compile
* javax.annotation:jsr250-api:jar:1.0:compile
* javax.enterprise:cdi-api:jar:1.0-SP4:compile

* org.jboss.spec.javax.interceptor:jboss-interceptors-
api_1.1_spec:jar:1.0.0.Betal:compile

 org.jboss.errai:errai-ioc-bus-support:jar:3.0-SNAPSHOT:compile
 org.jboss.errai:errai-cdi-client:jar:3.0-SNAPSHOT:compile
 org.jboss.errai:errai-security-server:jar:3.0-SNAPSHOT:compile
« org.picketlink:picketlink-api:jar:2.5.3.Final:compile
« org.picketlink:picketlink-idm-api:jar:2.5.3.Final:compile
« org.picketlink:picketlink-impl:jar:2.5.3.Final:compile
« org.picketlink:picketlink-common:jar:2.5.3.Final:compile
« org.picketlink:picketlink-idm-impl:jar:2.5.3.Final:compile

. he_del . del . -apitiar0.4: i
221

Chapter 15. Configuration

» com.google.gwt:gwt-user:jar:2.5.1:provided
« javax.validation:validation-api:jar:1.0.0.GA:provided
 javax.validation:validation-api:jar:sources:1.0.0.GA:provided
e org.json:json:jar:20090211:provided

» com.google.gwt:gwt-dev:jar:2.5.1:provided

222

Chapter 16.

Troubleshooting & FAQ

This section explains the cause of and solution to some common problems that people encounter
when building applications with Errai.

Of course, when lots of people trip over the same problem, it's probably because there is a
deficiency in the framework! A FAQ list like this is just a band-aid solution. If you have suggestions
for permanent fixes to these problems, please get in touch with us: file an issue in our issue tracker,
chat with us on IRC, or post a suggestion on our forum.

But for now, on to the FAQ:

16.1. Why does it seem that Errai can’t see my class at
compile time?

Possible symptoms:

e uncaught exception: java.lang.RuntimeException: No proxy provider found for type:
my.fully.qualified.ServiceName

Answer: Make sure the ErraiApp.properties file is actually making it into your runtime classpath.

One common cause of this problem is a <resources> section in pom.xml that includes src/main/
java (to expose .java sources to the GWT compiler) that does not also include src/main/resources
as a resource path. You must include both explicitly:

<resour ces>
<resour ce>
<di rect ory>src/ mai n/java</directory>
</ resource>
<resour ce>
<di rect ory>src/ mai n/ resour ces</directory>
</ resource>
</resources>

16.2. Why am | getting "java.lang.ClassFormatError:
lllegal method name "<init>$" in class org/xyz/package/
MyClass"?

Answer: This error message means that your project has a (direct or indirect) subclass of
JavaScriptObject that lacks a protected no-args constructor. All subtypes of JavaScriptObject
(also known as overlay types) must declare a protected no-args constructor, but the error

223

Chapter 16. Troubleshooting & FAQ

message could be much clearer. There is an issue filed in the GWT project’s bug tracker
for improving the error message: GWT issue 3383 [http://code.google.com/p/google-web-toolkit/
issues/detail?id=3383] .

16.3. I'm getting "java.lang.RuntimeException:
There are no proxy providers registered yet." in my
@PostConstruct method!

Answer: You can't invoke RPC methods via Cal | er<?> or by other means until after the
Errai Bus has finished its initial handshake. Try changing your @ost Const ruct annotation to
@fterlnitialization.Thiswill cause your method to be invoked later after the bus handshake
has completed.

If this doesn’t help, itis also possible that the proxies were never generated in the first place. Check
in . errai/RpcProxyLoader | npl . j ava to see if proxy code exists for the @Renot e and/or @at h
interface in question. If not, your @enot e interfaces were not present on the GWT compiler’s
classpath when your application module was compiled. Double-check your GWT compilation
classpath: all @Renot e interfaces must be visible to (in or inherited by) the GWT module that
contains the Cal | er <?> types. Pay special attention that your @renot e and @at h interfaces are
not in a package excluded from the GWT module (by default, every subpackage other thancl i ent
and shar ed is invisible to the GWT compiler).

224

http://code.google.com/p/google-web-toolkit/issues/detail?id=3383
http://code.google.com/p/google-web-toolkit/issues/detail?id=3383
http://code.google.com/p/google-web-toolkit/issues/detail?id=3383

Chapter 17.

Upgrade Guide

This chapter contains important information for migrating to newer versions of Errai. If you
experience any problems, don't hesitate to get in touch with us. See Reporting problems .

17.1. Upgrading from 1.* to 2.0

The first issues that will arise after replacing the jars or after changing the version numbers in
the pom xm are unresolved package imports. This is due to refactorings that became necessary
when the project grew. Most of these import problems can be resolved automatically by modern
IDEs (Organize Imports). So, this should replace or g. j boss. errai . bus. cli ent. protocol s. *
with or g. j boss. errai . common. cli ent. protocol s.* for example.

The following is a list of manual steps that have to be carried out when upgrading:

* @ExposedEntity became @Portable (
org.j boss. errai.comon. client.api.annotations.Portable). See Marshalling for
detalils.

e The @Conversational annotation must now target the event objects themselves, not the
observer methods of the events. So an event type is either conversational or not; you no
longer specify that listeners receive arbitrary events in a conversational context. See the
Conversational Events section of the CDI chapter for details.

 Errai CDI projects must now use the Si npl eDi spat cher instead of the AsynDi spat cher . This
has to be configured in Messaging (Errai Bus) Configuration .

e The bootstrap listener (configured in VEB-INF/web.xml) for Errai CDI
has changed (org.jboss.errai.container. DevModeCDl Boot st rap is now
org.j boss. errai.container.CDl Servl et St at eLi st ener).

» gwt 2.3.0 or newer must be used and replace older versions.
« mvel2 2.1.Beta8 or newer must be used and replace older versions.
« weld 1.1.5.Final or newer must be used and replace older versions.
* slf4j 1.6.1 or newer must be used and replace older versions.

« This step can be skipped if Maven is used to build the project. If the project is NOT built using
Maven, the following jar files have to be added manually to project’s build/class path: errai-
common-2.x.jar, errai-marshalling-2.x.jar, errai-codegen-2.x.jar, netty-4.0.0.Alphal.errai.rl.jar.

« If the project was built using an early version of an Errai archetype the configuration of
the maven-gwt-plugin has to be modified to contain the <host edWebapp>pat h-t o-your -
st andar d- webapp- f ol der </ host edWebapp> . This is usually either war or sr c/ nai n/ webapp .

225

Chapter 17. Upgrade Guide

17.2. Upgrading from 2.0.Beta to 2.0.*.Final

The following is a list of manual steps that have to be carried out when upgrading from a 2.0.Beta
version to 2.0.CR1 or 2.0.Final:

» Starting with 2.0.CR1 the default for automatic service discovery has been changed in
favour of CDI based applications. That means it has to be explicitly turned on for plain
bus applications (Errai applications that do not use Errai-CDI). Not doing so will result in
NoSubscri ber sToDel i ver To exceptions. The snippet below shows how to activate automatic
service discovery: .web.xml

<servl et >
<servl et - nane>Err ai Servl et </ servl et - nane>
<servl et-class>org.j boss. errai.bus. server.servl et. Def aul t Bl ocki ngSer vl et </
servl et-cl ass>
<i nit-paranp
<par am nane>aut o- di scover - servi ces</ par am nane>
<par am val ue>t rue</ par am val ue>
</init-paranp
<l oad- on- st art up>1</| oad- on- st art up>
</servlet>

e Thej boss7-support module was deleted and is no longer needed as a dependency.

17.3. Upgrading from Errai 2.2.x to 2.4 or 3.0

There are some breaking API changes in the update from Errai 2.2.x to Errai 2.4.x and 3.0.x.

Here are the steps you’ll need to take to get your project compiling after you update:

 Starting with Errai 2.3.0, GWT 2.5.0 or higher is required.

« Use your IDE to organize imports at the top level. In eclipse, you'd click in the Project Explorer,
press Ctrl-A (select all) and then Ctrl-O (Organize Imports). Other IDEs have similar features.

e The ErrorCal | back interface has been made more general so the same type can be shared
between Errai modules. This allows you reuse your own generic error handler class for, eg,
Errai JAX-RS and ErraiBus callbacks. If you want to use a generic error handler throughout your
app, change your Er r or Cal | back implementations to Er r or Cal | back<?> and change the first
argument type of your error() method to Object. Otherwise, if you have use-case-specific error
callbacks, implement the interfaces Rest Er r or Cal | back or BusEr r or Cal | back as appropriate.

e | OCBeanManager was replaced by two new types SyncBeanManager and AsyncBeanManager
that need to be used instead. See Client-side Bean Manager for details.

226

Upgrading to Errai 3.0

Note: Errai 3 is still changing rapidly, so this section is a work in progress. Please add any
additional steps you had to take in upgrading your own codebase.

17.4. Upgrading to Errai 3.0

Here are the steps you'll need to take to get your project running after you update:

 Errai's custom jetty launcher (org.jboss.errai.cdi.erver.gwt.JettyLauncher) is no longer needed
and has been deleted. Simply remove the corresponding -server parameter from your GWT
launch configuration if you still use it.

« The whole artifact errai-cdi-jetty has been deleted and is no longer required. Delete the JAR file
from your project or remove the corresponding dependency in your pom.xml

227

228

Chapter 18.

Downloads

The distribution packages can be downloaded from jboss.org http://jboss.org/errail
Downloads.html

229

http://jboss.org/errai/Downloads.html
http://jboss.org/errai/Downloads.html

230

Chapter 19.

Sources

Errai is currently managed using Github. You can clone our repositories from http://github.com/
errai .

231

http://github.com/errai
http://github.com/errai

232

Chapter 20.

Reporting problems

If you run into trouble don't hesitate to get in touch with us:

JIRA Issue Tracking: https://jira.jboss.org/jira/browse/ERRAI

e User Forum: http://community.jboss.org/en/errai?view=discussions

Mailing List: http://jposs.org/errai/MailingLists.html

IRC: irc:/lirc.freenode.net/errai

233

https://jira.jboss.org/jira/browse/ERRAI
http://community.jboss.org/en/errai?view=discussions
http://jboss.org/errai/MailingLists.html
irc://irc.freenode.net/errai

234

Chapter 21.

Erral License

Erraiis distributed under the terms of the Apache License, Version 2.0. See the full Apache license
text [http://www.apache.org/licenses/LICENSE-2.0].

235

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

236

	Errai Reference Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What is it?
	1.2. Required software
	1.3. Getting Started with Errai
	1.3.1. Technology Primer
	1.3.1.1. Google Web Toolkit (GWT)
	1.3.1.2. Contexts and Dependency Injection (CDI)
	1.3.1.3. Java API for RESTful Web Services (JAX-RS)
	1.3.1.4. ErraiBus

	1.3.2. Creating your first project
	1.3.2.1. Start from a working example application
	1.3.2.2. Starting with the Errai Forge Addon

	1.3.3. Running the app in GWT’s development mode
	1.3.4. Configuring your project for Eclipse
	1.3.4.1. Prerequisites
	1.3.4.2. Maven Integration for Eclipse (m2e)
	1.3.4.3. Importing your project
	1.3.4.4. Running Development Mode with Eclipse
	1.3.4.5. Debugging in Development Mode with Eclipse

	1.3.5. A Gentle Introduction to CDI
	1.3.5.1. Your First Bean
	1.3.5.2. Scopes
	1.3.5.3. EntryPoints

	Chapter 2. Messaging
	2.1. Messaging Overview
	2.2. Messaging API Basics
	2.2.1. Sending Messages with the Client Bus
	2.2.2. Receiving Messages on the Server Bus / Server Services
	2.2.3. Sending Messages with the Server Bus
	2.2.4. Receiving Messages on the Client Bus/ Client Services
	2.2.5. Local Services

	2.3. Single-Response Conversations & Pseudo-Synchronous Messaging
	2.4. Sender Inferred Subjects
	2.5. Broadcasting
	2.6. Client-to-Client Communication
	2.6.1. Relay Services

	2.7. Message Routing Information
	2.8. Handling Errors
	2.8.1. Handling global message transport errors

	2.9. Asynchronous Message Tasks
	2.10. Repeating Tasks
	2.11. Queue Sessions
	2.11.1. Lifecycle
	2.11.2. Scopes
	2.11.2.1. Session Scope
	2.11.2.2. Local Scope

	2.12. Client Logging and Error Handling
	2.13. Wire Protocol (J.REP)
	2.13.1. Payload Structure
	2.13.1.1. Built-in Subjects

	2.13.2. Message Routing
	2.13.3. Bus Management and Handshaking Protocols
	2.13.3.1. ServerBus and ClientBus commands

	2.14. Conversations
	2.15. WebSockets
	2.15.1. Configuring the sideband server
	2.15.2. Deploying with JBoss AS 7.1.2 (or higher)

	2.16. Bus Lifecycle
	2.16.1. Turning Server Communication On and Off
	2.16.2. Observing Bus Lifecycle State and Communication Status

	2.17. Shadow Services
	2.18. Debugging Messaging Problems

	Chapter 3. Dependency Injection
	3.1. Container Wiring
	3.2. Wiring server side components
	3.3. Scopes
	3.3.1. Dependent Scope

	3.4. Built-in Extensions
	3.4.1. Bus Services
	3.4.1.1. @Service
	3.4.1.2. @Local
	3.4.1.3. Lifecycle Impact of Services

	3.4.2. Client Components
	3.4.2.1. MessageBus
	3.4.2.2. RequestDispatcher
	3.4.2.3. Caller<?>
	3.4.2.4. Sender<?>

	3.4.3. Lifecycle Tools
	3.4.3.1. Controlling Startup
	3.4.3.2. Performing Tasks After Initialization

	3.4.4. Timed Methods

	3.5. Client-Side Bean Manager
	3.5.1. Looking up beans
	3.5.2. Availability of beans

	3.6. Alternatives and Mocks
	3.6.1. Alternatives
	3.6.2. Test Mocks

	3.7. Bean Lifecycle
	3.7.1. Destruction of Beans
	3.7.1.1. Disposers

	Chapter 4. Errai CDI
	4.1. Features and Limitations
	4.1.1. Other features

	4.2. Events
	4.2.1. Conversational events
	4.2.2. Local Events
	4.2.3. Client-Server Event Example

	4.3. Producers
	4.4. Safe dynamic lookup
	4.5. Deploying Errai CDI

	Chapter 5. Marshalling
	5.1. Mapping Your Domain
	5.1.1. @Portable and @NonPortable
	5.1.1.1. Example: A Common Mutable Bean
	5.1.1.2. Example: An Immutable Entity with a Public Constructor
	5.1.1.3. Example: An Immutable Entity with a Factory Method
	5.1.1.4. Example: An Immutable Entity with a Builder

	5.1.2. Manual Mapping
	5.1.2.1. Mapping Existing Client Classes
	5.1.2.2. Aliased Mappings of Existing Interface Contracts

	5.1.3. Manual Class Mapping
	5.1.3.1. MappingDefinition

	5.1.4. Custom Marshallers

	Chapter 6. Remote Procedure Calls (RPC)
	6.1. Creating an RPC Interface
	6.2. Making calls
	6.2.1. Proxy Injection

	6.3. Handling exceptions
	6.3.1. Global RPC exception handler

	6.4. Client-side Interceptors
	6.4.1. Annotating the Remote Interface
	6.4.2. Implementing an Interceptor
	6.4.3. Annotating the Interceptor (alternative)
	6.4.4. Interceptors and IOC

	6.5. Session and request objects in RPC endpoints
	6.6. Batching remote calls
	6.7. Asynchronous handling of RPCs on the server

	Chapter 7. Errai JAX-RS
	7.1. Server-Side JAX-RS Implementation
	7.2. Shared JAX-RS Interface
	7.3. Creating Requests
	7.3.1. Proxy Injection

	7.4. Handling Responses
	7.4.1. Handling Errors

	7.5. Client-side Interceptors
	7.5.1. Annotating the JAX-RS Interface
	7.5.2. Implementing an Interceptor
	7.5.3. Annotating the Interceptor (alternative)
	7.5.4. Interceptors and IOC

	7.6. Wire Format
	7.7. Path

	Chapter 8. Errai JPA
	8.1. Getting Started
	8.1.1. INF/persistence.xml
	8.1.2. Declaring an Entity Class
	8.1.2.1. Entity Attributes
	8.1.2.2. ID Attributes and Auto-Generated Identifiers
	8.1.2.3. Single-valued Attributes
	8.1.2.4. Plural (collection-valued) Attributes

	8.1.3. Entity Lifecycle States
	8.1.3.1. Cascade Rules

	8.1.4. Obtaining an instance of EntityManager
	8.1.4.1. Storing and Updating Entities
	8.1.4.2. Fetching Entities by ID
	8.1.4.3. Removing Entities from Persistent Storage
	8.1.4.3.1. Clearing all Local Storage

	8.1.4.4. Detaching Entity Instances from the Entity Manager
	8.1.4.5. Testing if an Entity is in the Managed State

	8.1.5. Named Queries
	8.1.5.1. Declaring Named Queries
	8.1.5.2. Executing Named Queries

	8.1.6. Entity Lifecycle Events
	8.1.7. JPA Metamodel
	8.1.7.1. Errai Extensions to JPA Metamodel API

	8.1.8. JPA Features Not Implemented in Errai 2.4
	8.1.9. Other Caveats for Errai 2.1 JPA

	8.2. Errai JPA Data Sync
	8.2.1. How To Use It
	8.2.1.1. A Running Example
	8.2.1.2. Server Side DataSyncServiceImpl
	8.2.1.3. Client Side — Declarative
	8.2.1.4. Client Side — Programmatic
	8.2.1.5. Dealing With Conflicts

	Chapter 9. Data Binding
	9.1. Getting Started
	9.1.1. Bindable Objects
	9.1.2. Initializing a DataBinder

	9.2. Creating Bindings
	9.3. Specifying Converters
	9.3.1. Registering a global default converter
	9.3.2. Providing a binding-specific converter

	9.4. Property Change Handlers
	9.5. Declarative Binding
	9.5.1. Default, Simple, and Chained Property Bindings
	9.5.2. Data Converters
	9.5.3. Replacing a model object

	9.6. Bean validation
	9.6.1. Excluding Classes from Validation

	Chapter 10. Errai UI
	10.1. Get started
	10.2. Use Errai UI Composite components
	10.2.1. Inject a single instance
	10.2.2. Inject multiple instances (for iteration)

	10.3. Create a @Templated Composite component
	10.3.1. Basic component
	10.3.2. Custom template names

	10.4. Create an HTML template
	10.4.1. Select a template from a larger HTML file

	10.5. Use other Widgets in a composite component
	10.5.1. Annotate Widgets in the template with @DataField
	10.5.2. Add corresponding attributes to the HTML template

	10.6. How HTML templates are merged with Components
	10.6.1. Example
	10.6.1.1. Composite component class:
	10.6.1.2. Template:
	10.6.1.3. Output / result:

	10.6.2. Element attributes (template wins)
	10.6.3. DOM Elements (component field wins)
	10.6.4. Inner text and inner HTML (preserved when component implements HasText or HasHTML)

	10.7. Event handlers
	10.7.1. Concepts
	10.7.2. GWT events on Widgets
	10.7.3. GWT events on DOM Elements
	10.7.4. Native DOM events on Elements

	10.8. HTML Form Support
	10.8.1. A Login Form that Triggers Browsers' "Remember Password" Feature
	10.8.2. Using the Correct Elements in the Template

	10.9. Data Binding
	10.9.1. Default, Simple, and Chained Property Bindings
	10.9.2. Binding of Lists
	10.9.2.1. Binding lists with @Bound

	10.9.3. Data Converters

	10.10. Nest Composite components
	10.11. Extend Composite components
	10.11.1. Template
	10.11.2. Parent component
	10.11.3. Child component

	10.12. Stylesheet binding
	10.12.1. Usage with Data Binding

	10.13. Internationalization (i18n)
	10.14. Extended styling with LESS

	Chapter 11. Errai UI Navigation
	11.1. Getting Started
	11.2. How it Works
	11.2.1. Declaring a Page
	11.2.1.1. The Default (Starting) Page
	11.2.1.2. Page Roles

	11.2.2. Page Lifecycle
	11.2.2.1. Lifecycle Phases
	11.2.2.2. Optional Parameters
	11.2.2.3. Page Instance Lifespan

	11.2.3. Page State Parameters
	11.2.4. Declaring a Link with TransitionAnchor
	11.2.5. Declaring a Manual Link
	11.2.6. Following a Manual Link
	11.2.7. Declaring a Link By UniquePageRole
	11.2.8. Installing the Navigation Panel into the User Interface
	11.2.9. Overriding the default Nagivating Panel type
	11.2.10. Handling Navigation Errors
	11.2.11. Viewing the Generated Navigation Graph

	Chapter 12. Errai Cordova (Mobile Support)
	12.1. Integrate with native hardware

	Chapter 13. Errai Security
	13.1. Basic Model
	13.2. Getting Started
	13.2.1. Making Users
	13.2.2. Authentication from the Client

	13.3. RestrictedAccess
	13.3.1. RPC Services
	13.3.1.1. Error Callbacks
	13.3.1.2. JAX-RS RPC

	13.3.2. Page Navigation
	13.3.2.1. Page Redirection and Caching

	13.3.3. Hiding UI Elements

	13.4. Using an Alternative to PicketLink
	13.4.1. Form Based Login

	Chapter 14. Logging
	14.1. What is slf4j?
	14.2. Client-Side Setup
	14.2.1. Errai Client-Side Log Handlers
	14.2.2. Configuring Errai Client-Side Log Handlers
	14.2.3. Format String

	14.3. Server-Side Setup
	14.4. Example Usage
	14.5. Logger Names

	Chapter 15. Configuration
	15.1. Errai Development Mode Configuration
	15.1.1. Deployment in Development Mode (JBossLauncher)
	15.1.2. Additional JBossLauncher Arguments
	15.1.3. Deployment to an Application Server

	15.2. ErraiApp.properties
	15.2.1. As a Marker File
	15.2.2. As a Configuration File
	15.2.2.1. Configuration Merging
	15.2.2.2. Errai Marshalling Configuration
	15.2.2.3. Errai IoC Configuration

	15.3. Messaging (Errai Bus) Configuration
	15.3.1. Compile-time Dependencies
	15.3.2. Disabling remote communication
	15.3.3. Configuring an alternative remote remote bus endpoint
	15.3.4. ErraiService.properties
	15.3.4.1. Message Dispatching
	15.3.4.2. Threading
	15.3.4.3. Buffering
	15.3.4.4. Clustering
	15.3.4.5. Startup Configuration
	15.3.4.6. Example Configuration

	15.3.5. Servlet Configuration
	15.3.5.1. DefaultBlockingServlet
	15.3.5.2. DefaultBlockingServlet configured as Filter
	15.3.5.3. JettyContinuationsServlet
	15.3.5.4. StandardAsyncServlet
	15.3.5.5. Automatic Service Discovery

	15.4. Errai JAX-RS Setup
	15.4.1. Compile-time dependency
	15.4.2. GWT Module
	15.4.3. Configuration
	15.4.3.1. Configuring the default root path of JAX-RS endpoints
	15.4.3.2. Enabling Jackson marshalling

	15.5. Errai JPA
	15.5.1. Compile-time Dependencies
	15.5.2. GWT Module Descriptor

	15.6. Errai JPA Data Sync
	15.6.1. Compile-time Dependencies
	15.6.2. GWT Module Descriptor

	15.7. Errai Data Binding
	15.7.1. Compile-time Dependencies
	15.7.2. GWT module descriptor
	15.7.3. Bootstrapping Data Binding without Errai IOC

	15.8. Errai UI
	15.8.1. Compile-time dependency
	15.8.2. GWT Module Descriptor

	15.9. Errai UI Navigation
	15.9.1. Compile-time Dependencies
	15.9.2. GWT Module Descriptor

	15.10. Errai Cordova (Mobile Support)
	15.10.1. Compile-time Dependencies
	15.10.2. Cordova Maven Plugin
	15.10.3. GWT Module Descriptor
	15.10.4. Building with Errai Cordova

	15.11. Errai Security
	15.11.1. Compile-time dependency
	15.11.2. GWT Module Descriptor
	15.11.3. CDI and Interceptor Bindings

	15.12. Errai Project Dependencies
	15.12.1. Errai Messaging
	15.12.2. Errai CDI
	15.12.3. Errai IOC
	15.12.4. Errai UI
	15.12.5. Errai Navigation
	15.12.6. Errai DataBinding
	15.12.7. Errai JPA Client
	15.12.8. Errai JPA Datasync
	15.12.9. Errai JAXRS
	15.12.10. Errai Cordova
	15.12.11. Errai Security

	Chapter 16. Troubleshooting & FAQ
	16.1. Why does it seem that Errai can’t see my class at compile time?
	16.2. Why am I getting "java.lang.ClassFormatError: Illegal method name "<init>$" in class org/xyz/package/MyClass"?
	16.3. I’m getting "java.lang.RuntimeException: There are no proxy providers registered yet." in my @PostConstruct method!

	Chapter 17. Upgrade Guide
	17.1. Upgrading from 1.* to 2.0
	17.2. Upgrading from 2.0.Beta to 2.0.*.Final
	17.3. Upgrading from Errai 2.2.x to 2.4 or 3.0
	17.4. Upgrading to Errai 3.0

	Chapter 18. Downloads
	Chapter 19. Sources
	Chapter 20. Reporting problems
	Chapter 21. Errai License

